
AD-RI52 835 MANAGEMENT ASPECTS OF SOFTWARE MAINTENANCE(U) NAVAL 1/2
POSTGRADUATE SCHOOL MONTEREY CA B J HENDERSON ET AL.

UNCLASSIFIED F/G 9/2 N

mmhhmonsooni
Ehmh ONENESSh
mmhmONENESSh
mhhm monsoonh
mhhhhhhhhhhhh
mhhmONENESShm

7- T 7 _

1111W 11. I112-2~
11111 1112.0

MICROCOPY RESOLUTION TEST C HART

/(

NAVAL POSTORADUATE SCHOOL
Monterey, California

'-U

,4 I

THESIS
M\NAGEMENT ASPECTS

OF
m.__ SOFTWARE M\INTENANCE

C." by

LU Brian J. Henderson
-I

Iji and
Brenda J. Sullivan

September 1981

I[hes is Adv i so r Carl R. Jnne I

App roved iar public release; distribution unIimited

4 .

SECURITY CLASSIFICATION tF THIS PAGE ("oien Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER VT ACCO RE I ALOG NUMBER

4. TITLE (and Subtitle) 5. OFYPE OF REPORT & PERIOD COVERED"-[.Mast er' s Thesis

Management Aspects of Software Maintenance September 1984
S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 1. CONTRACT OR GRANT NUMBER(e)

Brian J. Henderson and
,Brenda J. Sullivan

3. PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School September 1984
lonterev, California 93943 13. NUMBER OF PAGES

____ ___ ___ ____ ___ ___ ___ ____ ___ ___ ___ 115
14. MONITORING AGENCY NAME A ADORESS(f different from Controlling Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED

. ECLASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetrect entered In Block 20, if different from Report)

1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceeeary and identify by black number)

software maintenance, software management, software cost
estimating4, software tools..

20 ABSTRACT (Continue on reverse aide It neceeery and Identify by block number)

The Federal government depends upon software systems to fulfill
its missions. These software systems must be maintained and
improved to continue to meet the growing demands placed on them.
The process of software maintenance and improvement may he called
"software evolut ion". The software manager must be educated in

* the complex nature of software maintenance to be able to properly
evaluate and manage the software maintenance effort. In this
thesis, the authors explore software maintenance (Continued)

DID ' AN,3 1473 EDITION OF I NOV65 IS OBSoLETE

S N 0102- LF. 014- 6601 1 SECURITY CLASSIFICATION OF THIS PACi (iSn Dete Entered)

.S ," '"" j'

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ent,er

Abstract (Continued)

from a management perspective, highlighting topics of critical
importance. These topics include forecasting software ma intenance,
estimating the resources required to perform software maintenance,
managing maintenance personnel and effectively utili:in, soft-
ware tools. The synthesis of these topics .orms a manaerial
par:iJ iom for understinding the evolutionary nature of software
maint ena:ice.

/i

%N 0 102- LF- 014- A601

SECUIlTY CL.ASSIFICATION OF
r

THIS PAG[(rl'en Doesl Entered)

-. . ° /

AEFroved for public release; distribution anlimited.

Management Aspects
of

Software Maintenance

by

Brian J. Henderson
Lieutenantt United States Navy

B.A., University of Washington, 1979

and

Brenda J, Sullivan
Lieutenant, United States Navy lcc~lsion F

B.S., The American University, 1976

Submitted in partial fulfillment of the
requirements for the degree of -2

MASTER OF SCIENCE IN INFORMATION SYSTEMS;

from the tr". .

NAVAl POSTGRADUATE SCHOOL
September 1984$

,

Authors: _ -i

_Yson ... t____-_I . _

Approved by:_ - sot

Department of Administrative Sciences

.... - iN-777. - sT M -- - -...... --
Dean of Information and Polic Sciences

3

ABS7RACT

The Federal goverrment depends upon software systems to

fulfill its missions. These software systems must be main-

tained and improved tc continue to meet the growing demands

placed on them. The process of software maintenance and

improvement may be called "software evolution". The soft-

ware manager must be Educated in the complex nature cf soft-
Iware maintenance to be able to properly evaluate and manage

the software maintenance effort. In this thesis, the

authors explore software maintenance from a management

perspective, highlighting topics of critical impcrtance.
0@ These topics include forecasting software maintenance, esti-

mating the resources required to perform software mainte-

nance, managing maintenance personnel and effectively

utilizing software tcols. The synthesis of these tcpics

forms a managerial paradigm for understandin1j the evolu-

tionary nature of software maintenance.

4

0]

TABLE OF CONTENTS

I. INTRODUCTION................................10

A. BACKGROUNL...........................10

B. PROBLEM DISCUSSION..........................12

C . GENERAL PFCCEDURE.....................14

D. ORGANIZATICN............................14

4II. SCFTWARE MAIN'TENANCE DEFINED..................16

A. THE NATURE OF SOFTWARE...................16

B. SOFTWARE MAINTENANCE ACTIVITIES...........19

C. A DEFINITICN OF SOFTWARE MAINTENANCE.......20

D. SOFTWARE MAINTENANCE AND THE SOFTWARE LIFE

CYCLE...................................22

E. LAWS OF PEOGRAM EVOLUTION AND .IAINTENANCE . 29

III. FCRCASTING MAIN~TENANCE.......................32a

IV. rATA REQUIRED FOR MAINTENANCE COST ESIM~ATION 35

A. SOFTWARE CHARACTERISTICS................37

1. Develolment History................37

2. Maintenance History..............37

3. Type cf Program..............38

4. Complexity.................39

B. ENVIRONMENTAL CHARACTERISTICS...........43

1 . Personzel..................43

2. Computer Attributes............46

3. Software Tools...............48

4. Programming Techniques and Standards . . 1.48

5. Data Base..................48

C. R ECO MM END ATIONS................48

5

V. 1AINTENANCE CCST ESTIMATION 50

A. OVERVIEW 50

B. TRADITIONAl METHODS 50

C. PARAMETRIC MODELS 53

D. ESTIMATING MAINTENANCE COSTS 57

1. Planning an Estimate 57

2. Evaluating a Software laintenance Cost

Model 57

E. DEPARTMENT OF DEFENSE AND SOFTWARE COST

ESTIMATING 59

F. THE DEATH CF SOFTWARE 63

VI. PERSONNEL CONSIDERATIONS 68

A. INTRODUCTICN 68

B. SKILLS AND EXPERIENCE NEEDED IN SOFTWARE

MAINTENANCE 68

1. Military 72

2. Civil Service 73

3. Contractors 74

C. PERSONNEL ATTRIBUTES 74

D. A MAINTENANCE PROGRAMMER PERSONALITY

PROFILE 76

E. ORGANIZATION 77

VII. TCOIS AND STANEARDS 80

A. INTRODUCTICN 80

E. SYSTEM VIE 80

1 . Integration 81

2. Support 81

3. Standardization 81

4. Support of Standard Languages 81

5. Flexilility and Maintainability 81

C. TOOLS 81

D. TYPES OF TCOLS 82

6

E. ENVIRONMENTS 85

1. Programming Manager 9

2. Ada Piogramming Support Environment . . . 87

F. USE OF TOCIS AND STANDARDS90

VIII. DATA EVOLUTION 94

A. DATA AS A TOOL 94

B. USE OF DAIA BASE MANAGEMENT SYSTEMS 95

1. Class I Environment: Files 96

2. Class II Environment: Application Data

Base 97

3. Class III Environment: Subject Data

Bases 98

4. Class IV Environment: Information

Systems 99

5. Class V Environment: Distributed Data

Base 100

C. INDIVIDUAI DATA NEEDS 101

IX. CCNCLUSIONS/R ECOM ENDATIONS 102

A. THE PROBLEM 102

B. CONCLUSIONS 103

1. Historical Data Collection 103

2. Predicting Software Maintenance: 104

3. Personnel 104

4. Tools 105

5. Summary 106

APPENDIX A: TOOLS 107

A. TOOL CATALCGS AND REFERENCES 107

B. SOFTWARE MAINTENANCE COST ESTIMATING

MODELS 108

LIST CF BEFERENCES 110

BIBLIGCAPHY 114

IN:TIAL DISTRIBUTION lIST 115

7

r4 LIST OF TABLES

I. Ccrrective vs. Enhancement Maintenance21

II. Scftware Cost Lata Elements 36

III. Module Complexity Rating vs Type of Module ... 42

IV. Maintenance-Critical Documentation 44........

V. Scftware Maintenance Functions 51

VI. Software Maintenance Cost Estimating Procedure 58

VII. Model Parameters for Requirements Analysis

Phase 60

VIII. Mcdel Parameters in Specification and Design

Phase 61

IX. Model Parameters in Development and

Maintenance Phase 62

X. Tcol Function Taxonomy 84

XI. Software Quality Measurement Tools85

XII. Approved and Ncnapproved Data Management

Languages 93

0

8

LIST OF FIGURES

2.1 Software Maintenance Activities 20

2.2 Software Maintenance life Cycle 25

2.3 Software Life Cycle - Putnam 28

2.4 Software Life Cycle - McClure 29

2.5 Software Life Cycle - Reality 30

6.1 Communicaticr Styles 78

7.1 The Ada Programming Support Environment 88

9

a

-. r n r n r m r n-. - - 7 . f

I. INTRODUCTION

A. BACKGROUND

The federal government for the last twenty to thirty

years has become zore and more reliant on computer

Frocessing to accomplish its seemingly ever increasing and

complex missions. In 1955, when the trend started, hardware

was the overriding concern, consuming 85% of the total

computing dcllar [Ref. 1: p. 18]. Since that time, however,

dramatic improvements in technology and production have

substantially decreased the cost of computer hardware.

Software, on the other hand, has not benefitted fror techno-

logical advancements to the same degree as hardware and has

continued to rise in price relative to hardware. The rise

in the price of software and the decrease in the price of

hardware has resulted in software rapidly becoming the mcre

costly of the two. It is predicted that by 1985 software

costs will dominate hardware costs by a ratio of nine tc cne

[Ref. 1: p. 18]. The true impact of this trend becomes

significant when one realizes that the annual cost cf soft-

ware (development and maintenance) in the United States in

1980 was about $40 billion, or about 2% of the Gross

National Product [Ref. 1: p. 17]. It is predicted that by

1985 annual software costs will reach $200 billicn [Ref. 1:

p. 18].

A significant share of these costs are for software

maintenance. Various studies have shown that from forty -

to - seventy percent of the manpower effort in most ADP
activities is dedicated to software maintenance [Ref. 1, 2,

3]. Despite its monetary significance, there is as yet no

universally agreed upon definition of software maintenance.

10

10A

4

7he extensive research dcne cn software development and on

the management of the development process is only ncw begin-

ning to have its counterpart in the field of software main-

tenance. The underlying nature and causes of software

mainterance are still imperfectly understood by managEment

at all levels, military and industry. The reasons for this

lack of understanding [Ref. 4: p. 2-12] include:

1. Executive decision makers' lack of computer related

experience: Yor a manager overseeirg software rain-

tenance this lack of experience is often demorstrated

through impatience with system limitations and intcl-

erance for the costs of system enhancements.

2. Hardware orientation of software management mecha-

nisms: Most directives and techniques for contrcl-

4 ling the develcment and maintenance of software have

been adopted from hardware engineering disciplines.

Thus, quality assurance, reliability and maintain-

daility, and configuration management procedures

reflect an orientation toward tangible products.

Their translation for use witn the environment of

intangible software comlponents has not been a

ccmEletely successful one.

3. Development vice life cycle focus: This has signifi-

cant impact on the tasks of managing and maintaining

software after development. Computer programs that

are developed in the most expeditious, cost-effective

4 way to meet performance standards are not necessarily

conducive to maintainability. Often the develcEment

project manager must sacrifice software design

features that are conducive to program maintain-

4 ability in order to meet cost, schedule or perform-

ance re uirements. Thus the user is left with

software that is costly to maintain.

1

4. Increased software system complexity: Complexity is

not inherently bad for maintenance if intrCduced in

moderation and if documentation is adecuate. In

today's data processing environment there is less

need than ever before for complex designs and elegant

ccde. Considering the increasing costs of software

development ar:d maintenance it makes more sense to

Eroduce straightforward program logic and code.

5. "Low-bid" contracting for acquisition of a software

system: This situation affects maintenance indi-

rectly as a result of the efforts of any cost cutting

on the part cf the developer. Given the degree to

whicL DoD contracts its software development, this

problem has significant impact on the military.

6. Risk, cost and reliability estimating deficiencies:

Accurate estimation techniques would greatly enhance

the maintenance managers effectiveness in allocating

resources for program maintenance

7. Absence of Common Software Maintenance Practices:

Management at all levels are placed in the awkward

position of having to learn to interpret management

control data from each new system.

B. PECBIEB DISCUSSICN

This thesis will study software maintenance frcm a

management perspective. Primary emphasis will be placed on

examining pertinent aspects of the management of the func-

tion of software maintenance. The thesis will focus on the

maintenance activity itself, rather than on the interface

between the activity and the users of software. The manage-

ment of that interface is termed "Configuration lanaement",

and is well-qoverned with numerous policies and standards.

The majority of existing software configuration management

12

doctrine focuses on software development, while providing

little assistance to the software maintenance manager. The

authors do not intend to present a "how-to" manual for soft-

ware maintenance; rather, a framework will be offered upon

which tIE manager may develop his or her understanding.

A central premise of this thesis is that software

evolves. The concept of software evolution has teen

explored in the literature before [Ref. 5: p.217] and

provides the basis for a paradigm with which a software

manager may understand the nature and causes of software

maintenance.

Software evoluticr is influenced by a number of internal

and external factors. External factors define the envircn-

ment to which a given software system must adapt, and

internal factors define the ability of the system to make

the adaptation. The goal of the software manager is to

direct the evolution of the software toward a system that

continues to meet organizational goals, or at least away

from a system that is inefficient and expensive.

The software manager must seek to understand the factors

that influence software evolution in order to achieve the

goal of directing that evolution. By understanding these

factors, he or she may then learn to predict their irfluence

on software evolution. Once the influence of the internal

and external factors may be predicted, the software manager

may then seek to control those factors and direct the evolu-

tion of the software system.

A failure of the manager to even understand how and why

software evolves will allow the software system to evolve in

an uncontrolled fashion towards a morass of inflexible and

unreliable "spaghetti" code. Controlling the evoluticn of

software allows the software manager to maintain a func-

tioninS, effective software system well into the future.

13

Software, like any evolving entity, ndy reach an eVoIU-

tionary dead-end. This occurs when the internal factors

(code structure and design) make it impossible to respond to

the evolutionary demands of external factors. Software in

this stage may be said to have achieved "software senility".

The intent of this thesis is to help the software

manager understand what factors influence software evolu-

tion, hcw to predict software evolution, and finally, some

ideas on how to control the influence of interral and

external factors.

C. GENEEAL PROCEDURE

The procedure used was to research literature concerning

software maintenance. Particular emphasis was placed on

software maintenance management, cost estimation, and meth-

odologies to conduct software maintenance. The personal

experience of LT Sullivan was invaluable in placing much of

the research in perspective.

D. ORGANIZATION

Chapter II develops a definition of software mainte-

nance, and discusses the major activities conducted during

maintenance. The similarities of software maintenance to

software development and the characteristics of the mainte-

nance phase of the software life cycle are also discussed.

Considerations in predicting required software maintenance

are explcred in Chapter III, and the data required to accu-

rately predict software maintenance is discussed in Chapter

IV. In Chapter V, methods of estimating software mainte-

nance costs are presented, and problems associated with

current estimating techniques are discussed. Chapter Vi

explains in more detail personnel consideration in software

maintenance, and Chapter VII explores the impact of software

14

.4

tools and standards. The relationship of software mainte-

nance and data is the subject of Chapter VIII. Chapter IX

summarizes the authcrs' views on software mairterance,

explains a paradigm with which a software manager may better

understand software aaintenance.

15

II. SO.FWARE MAINTENANCE DEFINED

A. THE NATURE OF SOFTWARE

Software may be defined as "a realization of a set of

plans or specificaticns, encoded in computer language."

[Ref. 6: p. 7]. Software is not a physical entity, it is an

abstraction, a logical representation that is physically

manifested in the form of program listings and documenta-

tion. Software, unlike hardware, does not wear out.

Hardware is subject tc deterioration in the course cf ncrral

operaticn and requires maintenance in order to restore it to

its fcrmer operating condition. Software, on the cther

hand, dces not change unless and until people change it.

Software does not wear out of its own accord. Software

maintenance does not mean restoring software to its fctmer

state, rather it involves changes away from the previous

implementation. In the case of hardware, the former cper-

ating condition was the ideal and deterioration has caused

degraded performance. Restoration of hardware to the fcrmer

operating condition will restore optimum performance. With

software, however, defects or deficiencies in the former

state will have caused degraded performance, and software

must he changed to a state different from the original in

crder to restore optiaum performance. Software maintenaLce

becomes a process in which the software is continually

changed in order that its performance may be improved or

maintained. Unfortunately, software maintenance is cften so

poorly done that the software's performance is neither main-

tained or improved. The nature of software maintenance is

well-sumfarized below:

16

0 . "'

nfcrtunately, the nature of hardware and software
errors differ in at least one fundamental character-
istic - hardware deteriorates because of a lack of main-
tenance, whereas software deteriorates because of the
presence of maintenance [Ref. 7: p. 11].

A landmark study cf software maintenance is that done by

Bennet P. Lientz and E. Burton Swanson [Ref. 2]. In it the

authors specified three basic categories of software mainte-

nance:

1. Corrective maintenance: Emergency program fixes and

routine debugging.

2. Adaptive: The accommodation of changes to data

inputs and fields, and tc hardware and software.

3. Perfective maintenance: Enhancements for users,

improvements cf program documentation, and recoding

for efficiency in computation. [Ref. 2: p. 68].

A 1982 study by Rome Air Development Center (RADC) grouped

software maintenance into four basic categories [Ref. 6].

While very similar to the categories of [Ref. 2], the EADC

study included a category of "modifying" maintenance.

4. Modifying: Requirements or specifications are

changed. These changes may result from inadequate

initial analysis and specifications; they may spring

from new insights or better ideas about the require-

ments and specifications, or they may be caused by

evolving applications and environments.

A General Accounting Office (GAO) study [Ref. 8: pp.

28-29] offered six categories of software maintenance:

1. Modify or enhance the software to make it do things

for the end user that were not requested in the crig-

inal system design.

2. Modify or enhance software to make it do things for

the end users that were called for in the original

design but which were not present in the first

production version of the software.

17

* - -. . ".

3. Remove defects in which the software does something

other than what the user wanted.
4. Remcve defects in which the software is programmed

incorrectly.

5. Octimize the scftware to reduce the machine cost of

running it, leaving the user results unchanged.

6. make miscellaneous modifications, such as those

needed to interface with new releases of operating

systems.

The various categories of software maintenance may be

abstracted into two broad categories:

0 Corrective: Corrective maintenance may be character-

ized as modifications that leave the functional sFEc-

ifications of the system unchanged. Such maintenance

is necessary and mandatory, in the sense that the

system cannot operate or existing specificaticns

cannot be met. This would include corrective and

adaptive maintenance categories of Lientz and Swanson

and RADC, and categories 3 through 6 from the GAO

study.

e Enhancement: Enhancement maintenance changes the

original functional specifications of the system but

leaves the primary functions intact. That is to

say, an enhancement may add a report that was not

called for in the original specifications but which

is now required by a user due to changed government

reporting regulations, but an enhancement does not

change a payroll system to comprehensive management

system integrating payroll, accounting and inventory

functions. Iwo maintenance activities not speciti-

cally included in previous categories are maintenance

due to a growth in the system or as a response to

clanging requirements. Growth of a system includes

18

0"

expansion of the number of users serviced or files

generated and accessed. Changing requirements are

represented by the changed government regulaticns

example, such as the proposed nine-digit Zip Code

change. Enhancement maintenance is considered

largely discretionary. This would include Perfective

maintenance category of Lientz and Swansor, periec-

tive and modifying categories of RADC, and categories

1 and 2 from the GAO study.

B. SCFTNABE MAINTENAECE ACTIVITIES

A popular misconception about software maintenance, one

reinforced ty the use of the term "maintenance", is that the

primary activity is the correction of "bugs". The three

studies discussed earlier revealed that correcting bugs is a

small part of the actual maintenance effort. Figure 2. 1

shows the distributicn of software maintenance activities in

the organizations studied in [Ref. 2], while Table I

compares corrective and enhancement maintenance percentages

for each of the three studies cited.

Successful software maintenance depends upon gaining a

level cf understanding of the software system. Software

cannot be maintained unless those responsible for mainte-

nance understand the software. Maintenance personnel spend

at least half of their time trying to understand - the

system code, the system documentation, and the requests from
the users. Figure 2.1 shows data on the activities cf main-

tenance personnel in performing an enhancement. Maintenance

personnel spend about 47% of their time studying when making

an enhancement, and about 621 when making a correction

[Ref. 9: p. 2]. In a study of application program mainte-

nance it was observed that:

19Ii

M~ATE DOCUMENTATON

STLOY RECA

[Ref. 9: p.2]

KES 2 U6%arIZIZZ

Ii

Figure 2.1I Software Maintenance Activities.

Understanding the intent and style of impleaentation oi.
the orlqinal programmer was the maior cause of tice and
difficulty in ma king the change [Re . 10: p. 8].

C. A DEFINITION OF SCFTWARE MAINTENANCE

The authors' rewkarch has yielded numerous definitions

cf software maintenjrce that encompass bomt jL all of the

above named catejoriEs. The deinitios r in tn

mannc-r in which they treat the aLstracted cat, j;ries of

20

TABLE I

Corrective vs. Enhancement Naintenance

Corrective Enhancement

Lient2 & Swanson 17 64

GAC 19 51

RArC 31 61

note: Corrective maintenance figures do not inclule
adaptive maintena.ce

[Fef. 9: p. 1, 6: p. 27]

"corrective maintenance" and "enhancement maintenance". A

definiticn of software maintenance that includes both

corrective and enhancement categories is termed an "inclu-

sive" definition. A definition that includes corrective hut

not enhancement is an "exclusive" definition. Enhancement

maintenance in this context is termed "continued develop-

ment", or perhaps "prcduction programming".

Software maintenance, for the purposes of this thesis,

will he defined as:

....all those activities associated with a software
s ystem after the system has been initially defined,
developed, deployed and accepted (Ref. 6: p.9

This may be summarized as the "function of keeping software

in an o,erdt4.ondl mode" [Ref. 11: p. 139]. This inclusive

definition is used because:

21

1. Ecth corrective and enhancement maintenance ar2

:erformed by the same organization, and often by the

same person. Approximately two-thirds of the systems

studied in [Ref. 2] were maintained by one or two

peoFle. Both forms of software maintenance are

performed concurrently in the same environment using

the same tools.

2. The bulk of the effort in software maintenance is in

understanding the software.

3. The term "'maintenance" has ueen accepted as referring

tc both correction and enhancement, despite the poor

connotation of the word.

4. The inclusive definition reflects the concept of

software evolution. With the inclusive definition

software may gradually evolve from the original

product, rather than being continually redefined and

redeveloped.

5. It is difficult to say where the separation between

corrective maintenance and continued develcpment

wculd occur. Given that both activities are usually

performed by the same person, such a distinction

becomes meaningless.

D. SOFTWARE MAINTENANCE AND THE SOFTWARE LIFE CYCLE

The software life cycle is the multiphase process begin-

ning with problem definition and continuing to software
system obsolescence. The software life cycle is separated

into two primary phases, the development phase and the main-

teiiance Ehase. While there is some debate over the validity

of this separation given the evolving, continually devel-
oping nature of software systems, it will be adhered to in

th-s thesis because it supports the accepted inclusive defi-

nition cf software maintenance. The sub-phases of the

deielorent phase are:

22

1. Requirements analysis: The objective of this stage

is to Iefine the rehuirements of a software system.

REsources such as manpower and hardware and software

support needed to create and support the softwdre are

considered.

2. Specification: -he stage in which each furcticn to

be performed by the software is precisely iefined.

3. Design: The stage in which algorithms are developed

to describe hcw each specific software system func-

tion is to be performed.

4. Ccding: The stage in which tae design algorithms are

translated intc computer code. The translaticn of

the design intc code must be such that the resaltant

software neitler adds nor subtracts form the design

definition.

5. Testing: The objective of this stage is to demcn-

strate that the software conforms to specifications

and performs ccrrectly for all input data. The goal

of testing is to eliminate unexpected program ccndi-

tions and failures and to discover any incorrect

inplementation of the specification (Ref. 11: p. 32].

A software system that is designed with future maintenance

in mind will more readily evolve. The three principles of

maintainable software that should be embodied in the c~ig-

inal design are:

o Understandability: The ease with which software code

and documentation may be read and understood.

* Testability: The ease with which the correctness of

changes may be demonstrated.

4 e Modifiability: The ease with which software code may

be modified. [Ref. 11: pp. 36-37].

The maintenance phase is very similar to the develcpment

phase with the exception of the initial stage of

23

understanding the scftwaze. ?igure 2.2 shows the m airte-

nanicE life cycle. All Aspects of tL-_ 3odification a.;Froach
mus;t be considered in the context of the existin3 installed

software, not just in t of the structural, human En'i-

neering, reliability, in I efficiii " -actors that are the

major considerations whc:. >Iv-lopia software. The ainte-

nance objective is to limit t:.e effect of a modification on

other Farts of the i nsTilled software and on user inter-

faces, to avoid excessive confusion And retraining as well

as tc avcid compromising system integrit7 and uality. Once

an understanding of the software is gained, the maintenance

phase, particularly in tae case of enhancement maintenance,

Froceeds as a microccsm of the deveio.paent phase.

The stages of the software maintenance phase may be

defined as follows:

1. Understand the Software: During this stage the soft-

ware system program listings and available documenta-

tion are studied in order to gain an understanding of
the system's logic and processes. The user's

complaint of error or request for modification is

also studied in order to determine what action needs

tc be taken.

2. Define Objective and Approach: This stage inclades:

a) Requirements Analysis: The system capabilities and

the resources needed to provide the modification

are defined in the context of existing system

capabilities and constraints.

b) Specification: Edch new function to he Eerfcrmed

by the software modification and the impact or

existing functions is precisely defined.

c) Design: Changes to the design algorithms and

procedures are defined, or, in the case of poor

documentation, new algorithms are devEloped to

describe how each new or modified function is to

be performed.

24

1------------ -- *-~ 1(NEi' S AP -FQUIHE ME% TS

SPIECIFICA'DN

APP40 CH

* N 2ESIGN

.ECK-POINT

KAPL EMFNT
CD

NSPE CTION

UNIT
EST

NT E I'.RA rON

R AE A L ,TF SYSTEM
;C T rA F EST

ACCEPTANCE

CNECK POINT

L~1 rf.:p. 1512

Figure 2.2 Software Maintenance Life Cycle. S

c5

d) Check-point review: This step affords a chance to

validate and verify the p roposed modifica tion.

The software ganager must evaluate wether the

proposed mcdification accurately and completely

addresses the problem, and whether the cost and

impact of the modification justifies implementa-

tion.

3. Iaplement the nodification: This is the ccding

stage, where the modification design i3 ccurectly

translated into well-structured code.

4. Revalidating the Software: During this stage it must

he demonstrated that the modifications ace correctly

isplemented, that the software system as a whcle

still functions correctly, and that soft-are iuality

has not been harmed by the modification. The actual

testing of the software modification anI its impact

on the system follows from the testing steps of the

design process:

a) Unit testing: Each module changed is unit tested

to determine if it functions properly.

b) Integration Test: Regression testing is performed

as each module is re-integrated into the system to

determine if any other parts of the system have

teen adversely affected by the modification.

c) System and acceptance Test: The changed system is

tested to ensure that it meets both the original

design and the modification specifications.

The goal of minimizing the impact of a modification on a

software system is tcth complex and difficult to achieve.

This is primarily due to the 'ripple effect'; the side

effect of modifying software such that changes to one part

of a software system affect other areas of the system

[Ref. 11: p. 154]. 7he ripple effect is due to the various

interrelationships between modules in a program and between

26

I

programs in a software s"stem. :odules and programs may be

related in the terms ei functions or variables thev share.

Any change to a module Ias the potential to propdydte its

effect throughout the code. Changes to correct errors show

at least a 20 - 505 chance of generating further errors

[Ref. 12: p.12 2].

The effort and the difficulty of impiementin; the change

is not simply a matter of rewriting the necessary *code to

implement the change, bat must also include an examination

cf other parts of the system to determine if aditional

V adjustments to compensate for the change must be made.

Usually this involves a manual search of the code to iden-

tify any other affected modules, a process that often

reguires more time and effort than rewriting the code.

The software life cycle is represented graFIhically in

terms of resource (usuail!, manpower) use over time. There

are several views as to how such a representation should

look. Cne view, that of Putnam and others [Ref. 13], holds

that the life cycle closely resembles a Rayleigh curve with

the inflection point representing the delivery of the soft-

ware system to the user and the start of the maintenance

phase (Figure 2.3). The bulk of the effort occurs in the

mainterance phase. The effort required to mairtain a

system steadily decreases over time [Ref. 13: p. 12].

Enhancements that exceed the level of effort should be

treated as new development.

An alternative view holds that the effort varies over

time as each new enhancement request initiates a mini-

development cycle (Figure 2.4). All enhancements, regard-

less of scope, are treated as continuation of the original

system instead of new developments. This view supports the

software evolution perspective taken in this thesis, and

see:ms to better represent the industry and goveri-ment policy

of issuing successive "releases" (major changes or revi-

* sions) of a software system.

27

(MANU~tH L Il1

I I ~ ~ LUNCTUNAL -

~UAllA11A IATJN

snim SPEWIfCATION
J~h~L1L'"

A N1 A -B t u' ~ CcEtr~

II

II

Figure 2.3 Software Life Cycle -Putnam.

Ideally, given a stable maintenance environment wcrking

on a well-documented, well-desiyned systEmt using waintErance

techniquEs incorporating state-olr-the-art. teclnr.ology, the

curve in Figure 2.4 will gradually dQ,;rease. Each 'hump'

4will Le Iowev than its predecesser a6 tile system is graitu-

ally refinEd and the ripple effects are tightly ccntrcllcd.

Unfortunately, the rEality is more accirateli represented in

Figure 2.5, where the resources requirted to supiort the

system increase Steadily over t1ime. Enhanct:emer;ts are

re(~ucstEd that exceed the capacity o.rL tht: system tc evclve.

Poor design practices, p'oor documentation and poor aainte-

runce practices fuel the ripple effe~ct and errors jrojayateS

through the system. Any)scillatior, ezf,.ct due to Erhanct.-

ment is dampened out in tihe c,)ntillnial LA tt ie against !'Iuj.

28

r I
Begin Production Life

Major Major
rd Change Change

0

MAINTENANCE PHASE

Time

[Ref. 11: p. 122]

Figure 2.4 Software Life Cycle - McClure.

E. LAWS OF PROGRAM VCLUTION AND MAINTENANCE

Studies by Belady, Lehman and others have shcwn that

there exists a deteruministic, measurable regularity in the

life .;ycle of a software system. This Legularity has Leei;

expressed in the five laws of largu prigram evolution

dynamics. These laws have been supplemented Ly Barry

Boelim's three laws cf software maintenance. These Laws

accurately represent observed phtvnomena in software evolu-

tion, and are useful to the softwaLt ma.ajer ir, under-

standing how and wLy Eoftware evolves.

1. Law of Continuinj Cbanye: A system that is used

undergoes continuing change until it is jud1.ed more U

cost effective to replace the systEm wi th a

re-developed version.

2. Law of Increasing Entropy: The entropy of a system

(its unstructureiness) increases with ti me unl s:

29

II

- -- - - - J14: .159 .- - -. ~ .------ *-- ~
I/

/

(rEf. 14: p. 159)

Figure 2.5 Softvare Life Cycle - Reality.

slecific effort is made to maintain or reduce it

(Ref. 4: p. 2-3].

3. Fundamental Law of Program Evolution: Program evolu-

tion is subject to dynamics which make the procram-

ming process self-regulating, with statistically

2eterminahle trends and invariances, while alpearing

tc be stochastic locally in time and space.

4. Law of Invariant Pork Fate: The overall level of

effort in a large programming project is statisti-

0 cally invariant, or tends to remain fairly constant

over time.

5. Law cf Conservation of Familiarity: For reliable,

Flannul evolution, a large-program undergoing change

must be released at regular intervals determined by a

safe maximum release contert. If the interval

s~acinj or maximum content limitations are exceeded,

30

[K

integration, Suality and usage problems will cccur

with the resultant time and cost over-runs (Ref. 15:

p.142].
Scme additional laws of software maintenance were

presentcd by Barry Boehm in [Ref. 16].

1. law of Organizational Reflection (Conway's Law):

Software products and the organizations they serve

grow to reflect each other.

2. Law of Glacial Technology Transfer: Software Frod-

ucts are rarely modified to accommodate a different

technology.

3. Law of Maintenance Leverage: Organizational analysis

and software design have more maintenance leverage

than any development or maintenance actions.

31

I-

III. FORCASTING MAINTENANCE

While software maintenance follows a cyclic pattern of

progressive enhancements, it is generally performed as a

level of effort activity [Ref. 1: pp. 545]. The cycles of

enhancements and the difficulty of each enhancement are

largely unpredictable very far into the future. The central

problem cf forecasting software costs is predicting what the

level of effort will be over the operational life of the

software system.

Two primary factors influence the level of effort esti-

mate. The first is the amount of software maintenance

needed. Future software maintenance needs are driven by

error repair and changes rising from external factors.

Cperational systems fulfilling current and projected mission

needs will naturally require maintenance for some tiMe into

the future, and may require considerable staff to sujpcrt

new releases and revisions. The second factor is the

perceived benefit of the software to the organization, which

depends upon the worth of the software relative to other

resource requirements. The two forces combine to yield a

level of effort sufficient to correct software errors and

make most changes due to external factors within a reascn-

able time. It is nct completely clear, however, how the

amount of maintenance needed and its perceived benefit

interact to determine a level of effort [Ref. 17: pp. 4].

The estimating Froblem is complicated by the unpredic-

table nature of maintenance ripple effects. Hopefully,

analysis of available documentation and careful regression

testing will help tc eliminate errors, but the software

manager must recognize this complication to his estimation

problem. While none of the published techniques or models

32

0|

St

available to the authors specifically addressed the ripple

* effect in the estimating process, a realization of the

phenomenon is often imbedded in the representation of main-

tenance personnel skill levels. Intuitively, the more

experienced analysts and programmers are more likely to

detect potential ripple effects.

Cnce the level of effort has been determined, software

maintenance labor ccsts are relatively easy to estimate

using the appropriate labor rates. Software maintenance is

a labor-intensive activity, and labor costs are dominant.

Costs assc:iated with computer hardware and support software

may he included, but such costs are normally attrituted to

activity overhead as those elements benefit other activities

in addition to the maintenance of a particular software

system. A software manager should be aware of the benefits

cf acquiring sophisticated support software to replace main-

tenance personnel [Ref. 18: p. 247].

The future need for software maintenance and its

perceived benefit are difficult to quantify. Thus the soft-

ware manager requires methods somewhat more quantifiable and

sustainatle to generate reasonable estimates of software

raintenance costs. The following chapters will discuss such

methods and how a software manager should approach the task

of estimating the software maintenance level of effort.

The foundation of any approach to forecasting software

mairterance is the estimator's own experience and judgement,

the blend of which will hereafter be referred to as "experi-

enced :udgement". The software manager must apply his or

her own experienced judgement to the forecasting/estimating

methodology. Experienced judgement is either apilied

directly, as in direct estimating or estimating by analogy,

or it is used to directly estimate the parameters upon which

a parametric model is based. Published cost estimating

models reduce the amcunt of judgement needed by Iroviding

33

0- -- 7

table of values for all parameters used, and the role of the

estimator is reduced to one of picking numbers and plugging

them into formulas. One must remember that those models

were derived from the model designer's experience, modified

1v statistical analysis of sample populations, and will not

apply to all environments. The software manager must under-

stand and appreciate the characteristics and limita+icns of

any apprcach used tc forecast future software maintenance

needs. Any approach the estimator cares to use will yield

an estimate. The accuracy of that estimate depends upon the

estimator's understanding of the software being maintained,

the environment within which it will be maintained, and the

applicability of the cost estimation approach to the soft-

ware and the envircnment. The estimator must ask the

following guestion: "toes this approach fit my situation and

nee d s ?"

0

34

IV. DATA REQUIREI FOR MAINTENANCE COST ESTIHATICN

The lasic manageizent tenet: "You can't manage what you

can't measure" applies to the management of software mainte-

nancE with the caveat "You can't measure what you don't keep

dafa cn." Accurate and complete data collection i.7 the

heart of any algorithmic technique to estimate software

maintenance costs. Without good data, the parametric values

of the iodel cannot LE reliably dervei and the model cannot

be accurately calitrated to the maintenance activity

Envircnment.

The question is then raised "What data must be

collected?" The data required falls into two broad catego-

ries:

" Characteristics of the Software

" Characteristics of the Maintenance Environment.

The characteristics presented in Table II and Lelcw are

derived from published analysis of software cost estimation

models [Ref. 19, 20], and the authors' own analysis of

available models [Ref. 1, 13, 21, 22], The listing is not

all inclusive: the iffmaturity of software maintenance cost

estimaticn is such that an attempt at presenting a compre-

hensive list of all variables that influence sof1fware main-

tenance would be presumptuous. It is intended more as a

reference to the software manager in the hope that he or she

may he guided toward a better understanding of the scope ani

nature of the task.

35

TABLE II

Software Cost Data Elements

Scftware Characteristics Environment Characteristics

Develo ment Histcry Personnel
manpower (M/yry experience
total effort language familiaritytotal time suporft S/w familiarity
environmental descrip application familiarityparticipation in design

personnel continuity
Maintenance History real productivity

valid errors fctind
enhancements started Computer attributes
enhancements deferred size and aae
emergency fixes started memory constraints
originai LOC machiLe constrdints
modified LOC operating system
new LOC access of maintenance
original modules personnel to computer
modified modules scbeduling priorities
new modules
tctal modules

Type of Program Software Tools
application software tools
language used available to
structure maintenance personnel

Complexity Programming Techniques
size Extent to which
operators modern pr-jramming
operands practices are used
degree of unigueness
algorithm complexity Data Base
H/W - S1W interfaces size
input - output files avaiiabilitv to
module complexity saint personnel

Documentation
tc -levelde ail

currency

LCC - lines of code
H/W - hardware17/ T - software
MM - man-months

36

A. SCFTWARE CHARACTEFISTICS

1. Development Fistorv

Hanpower during develcpment (M/yr) T he man-months (:A'/:'r)

per year of the the development phase, broken down hy phase

of the lifecycle (e.g., Requirements Analysis,

Spe cification, Design, Coding, Testingj) and by labor mix

(e.., programmers, analysts , documentation specialists,

etc.)

Total development effort: The total numher of zan-mnths

expended during develcpment.

Development time: Calendar months of development.

Description of develcpment environment: A descripticn of

the development envizcnment to include

- ccmputer used

* tools and autcmated prcgramming dids used

* languages used

- software engineering techniques and modern jrogram-

ming practices used.

It should be noted which of the above were new to the devel-

cpaent environment.

2. eaintenance History

No. of valid errors found per month: Valid errors found

sir.ce program acceptance

No. of enhancements started per month: Number of user or

environment driven enhancements started since program

acceptance.

37

No. of enhancements deferred per month: Enharncements

deterrEd for what-ever reason since pro2:adm acceptancs9.

No. of emergency fixes started per month: Emergenc- fixes

since program acceptance.

Criginal lines of code: Lines of code inI program at accept-

ance.

Mlodified lines of ccde: Lines of code moditied siice

acceptance.

Sew ICC: Lines of ccde added since accePtance.

Total LOC: Cumulative lines of code.

Original modules: Mcdules in program at acceptance.

Modified modules: Mcdules modified since acceptance

New modules: Modules added since acceptance.

Total modules: cumulative modules in program.

3. 712t of Proqram

Function: Scientific, transaCtion processing, real timc

coritrcl system, operating system, etc. The logical function

ha.s a significant impact on the complexity of the program.

Language used: High order language (HOL) --COBOL

FOPTEAN, PLi, etc.

Assemhly language

tUniqueress of language--Li it common and
0 well-known like FCRTPAN or a specific,

obscure assembly lanjuaje?

38

Structure: Those attributes that coLtrlibute to the read-

ability cf the prograz form [Ref. 23: p. 72]. The hierarch-

ical representation that indicates tne relationship 22Etween

module S. A subjective parameter vaiue is useful here.

"Well-structured" could mean code featuring ieJendent

modules employing parameter-passinj and information aiing.

"Poorly structured" could refer to spajhetti code re!tlte

with GO 1O's

4. Ccomplexi tv

Size: Program size is measured in "lines of code", an

expressicn which can mean many things. Exactly what consti-

tutes a "line of ccde" is difficult to define becaLse

programs consist cf more than executable statements.

Programs may include comment lines, data declarations, joh

contrcl language statements, format statements and macro-

instructions. A counting method may consider every state-

m ent to he a line, whereas other methods may only corsider a

subset, such as executable lines and data declarations.

Barry Boehm uses "delivered source instructions" as his

vehicle, and defines it as follows:

--'his term includes all program instructions created by
project personnel and processed into machine code by
some ccmbination of preprocessors, compilers, and asseM-
blers. It excludes comment cards ani anmodified utility
software. It includes job control language, format
statements, and data declarations.

(Ref. 1: p. 59]

A more subtle problem cccurs when counting lines of

code for prcgrams written in HOL. FORTRAN commonly uses cne

stiatement per line, although continuation lines are allowed

and some FORTRAN versions allow multiple statements ,,er

line. A freely structurel language like COBOL uses punctua-

39

_J

I

tion to delimit statements and a line of code may contain

several statements. A line of code in P71 may be evezything

written between semicclons.

Recognition of the problem of' how to measures size

is necessary to effectively manage resources. Programmer

productivity metrics are meaningless unless the software

manager understands the line-counting rules in effect.

Thtise rules should he documented and clearly understood by

al_ who interact with software maintenance.

Operators: The number of unigue operators and the total

number of operators in the program.

Operands: The number of unique operands and the total

number of operators in the program. Operators and operands

are used in M. Halstead's Complexity metrics (Ref. 24].

Degree of uniqueness: A subjective measure of the unique-

ness of the function and the software system. The impact

here is personal familiarity with the problem, the hardware

and the software. The more common the function, hardware

and software, the lesser the degree of complexity and the

more likely maintenance personnel will auickly understand

the system.

Complexity of algorithm: Again, this is a subjective

measure. A more complex and sophisticated algorithm (e.g.,

electromagnetic signal analysis) will be more difficult to

understand than a relatively simple one (e.g., payrcll

calculation). If the mathematical sophistication of the

underlying algorithm is beycnd the perspicacity of the

programmers and analysts available then there evolves a

strong inclination not to touch the program for fear it will

"break".

40

Z

H/11 - S/W interfaces: Types of interfaces incl'ide data

storage and retrieval devices, on-line communication

devices, real-time command and control, and interactive

tecminals. The numher and diversity of interfaces directly

impacts the complexity of the system.

Input-output files format: The number of different formats

the system reads and cutputs, including card, tape, disk, or

screen formats. The type of file format and the number of

files accessed may ispact system complexity [Ref. 21 :B-2].

The DoD Micro Estimating Model used to estimate development

costs incorporates different file formats as input parame-

ters, but weights each the same (Ref. 19: p. A-15]. This

implies the impact on maintenance costs is either negli-

gible, cr too dependent upon specific equipment to incorpo-

rate in a general model.

Complexity of modules: Table III compares the subjective

complexity ratings as a function of the type of operation to

be primarily performed by the module [Ref. 1: p. 391).

While the ratings are designed to be incorporated into Barry

W. Boehm's COCOMO model, they do assist the software manager

in understanding some of the characteristics of a program

that directly impact complexity.

Documentation: Documentation is essential to software main-

tenance. Maintenance personnel must he able to understand

how and why a program operates in order to perform software

maintenance. Documentation is the tool used to gain that

understanding. While software documentation is a controver-

sial subject, most software experts agree on the following:

1. Well-documented programs are easier to work with that

undocumented programs, but incorrect documentation is

far worse than none at all.

41

TABLE III

C IModule Complexity Bating vs Type of nodule

onfl' VotaI .151, 5 .. eoefiil 515a Mariage~ient
oas ~er~i , i _ve'al-ons -.oerations

war, a Pew icin- pie expressions' statements with' main meniory
nested SP Vper- for example simple formats
ators. DOs. 4 = B C-iD-E)
CASEs iRTHEN-
ELSEs Simple
predicates

Low Straight forward Evaluation of mod- No cognizance Single file subset-
nesting of SP erate levei ex- needed of par- ling with no data
operators. pressions. to Of icular pro- structure
Mostly SIMple example. cessor or 1/O changes, no ed-
predicaios 0 =SORT device charac- its, no intermedi-

(8-2 -4 *AC) terStiC3 1/O ate files
done at GE-T/
PUT level. No
cognizance of
overlap

Nominal mostly Simple Use of standard 1/O processing in- Multifile 'nput and
nesting Some math and statis- cludeS device sinq'e file out-
iniermodule tical routines. selection. status put. Simple
control. Deci- Basic matnx and checking and structural
sion tables vector opera- error processing changes, simple

tions edits

GHigh Hignly nested SP Basic numencat Coeiaiions at Special purpose
operators with analysis: multi- phtysical 1/O subroutines ac-
many coin- vanate inter-po- level (Pihyscal tivated by data
pound predi- lation, ordinary storage address stream con-
cates. Queue differential translations, tents. complex
and stack con- equations Ba- seecs, reads, data restructur-
trot Considers- sic truncation, 31c) Optimized ing at record
ble iniermodjule roundof con- 0 verlap level
Zontrol :erns

Very high Reentrant and ae- Diffcult but struc. Routines for inter. A generalized, Pa-
cursive coding. tuied NA near. -upt diagnosis rameter-driven
FixedJ-priority in- singular matnx servicing, mask- file structuring
temiupt handling equations. par- ng Communi- routine File

flal differential cation line ' building, comn-
*equations h'andling inand process-

ing, search

Extra hiqh Multiole @esource Difficult and un- Device timing-de- Highly coupled,
Schieduling With structured NA pendent coding, dynamic rela-
Cynamicaily highfy accurate microprogrammed tional struc-
changing prion- analysis of operations tures. Natural
lies. Microcode- noisy. stochas- language data
evef confrof 'IC Jata management

[Ref. 1: p. 3 91]

0 --- ---- -- __ ___2

I

2. Good documentation implies conciseness, consistency

of style, and ease of update.

(T 3. A program should be its own documentatioa: that is, a

well-documented program should take advantage of the

self-documenting facilities offered by the language

and should have its documentation built intc the

source code to the maximum extent practicalle

[ref. 25: p.17].

Documentation takes many forms. Robert L. Glass [Ref. 23:

p. 163] offers two categories of documentation of interest

to the software manacer: top-level software definition and

detail-level software definition. Table IV descrites the

two categories in more detail. Additional categories may

include user, test and operation documentation.

Currency/correctness of documentation: To be of any value,

documentation must be both correct and current.

ocumentation that does not accurately reflect the current

state of a system is worse than none at all. Unfortunately,

most system documentation resides in tomes that gather dust

on shelves. Maintaining documentation is a task that

everyone tries to avcid, yet must be done if the software

system is to survive. Tools are available to aid ir this

task.

P. ENVIEONMENTAL CHAPACTERISTICS

1. Personnel

The impact of personnel characteristics on software

mainterance and the management of personnel to accomplish

the software maintenance function will be discussed in

Chapter VI. This section will define the terms used.

43

TABLE IV

Maintenance-Critical Documentation

I. Tcp-level software definition (document)

a. Overall structure summary

b. Overall database summary

c. Design decision data

d. Underlying philosophy

e.. Midlevel structure(s)

f. Midlevel data base(s)

g. Index to listing

II. Detail level software definition (listing)

a. Commentary for

1. Detail structures

2. Detail database

IC 3. Detail functions

4. Implementation anomalies

b. Readable names

c. Structured, indented code

A
[Ref. 23: p. 163]

Prograhzing experience: The number of years of Frograrming

experience an individual has. When used as an input to

estimate cost estimating models, it is assumed that more

experience has a positive impact on reducing ccsts. This

may cr may not be true, and is heavily dependent on the

cther characteristics listed below.

44

Familiarity with language: A subjective measure of the

expertise an individual has with a particular language.

Soze studies have shcwn experience in a number of languages

is of greater benefit than ccnsiderable experience in cne

larguage.

Familiarity with hardware and support software: A subjec-

tive measure of the experience an individual has with the

computer and its support software (e.g., operating systen,

compilers and available software tools).

Familiarity with function: A subjective measure of the

understanding an individual has of the software's function.

This beccmes important in complex functions, particularly so

where the underlying algorithm is abstruse or the system is

poorly-documented.

Participation in design effort: The degree to which an

individual was involved in the design and development stage

of the software. Such experience is invaluable in helping

maintenance personnel understand the software's underlying

logic and philosophy.

Personnel continuity: Personnel continuity may be repre-

sentd as personnel turnover. A maintenance staff with low

turnover will spend less time on job communication and

training ani more on productive work.

Beal ;roductivity: Productivity is a highly controversial

metric that is extremely difficult to define. A typical

productivity definiticn of "lines of code written per man-

month" fails on four counts.

* 1. The definition of "lines ot code" is imprecise, and a

productivity measure incorporati. it suffers from

sensitivity tc line counting variations.

45

0

2. "Man-month" is a measure of effort, not of prcduc-

i tivity. While there is a correlation between efrt

and productivity, it can be represented using the

metric "man-mcnth" only with the greatest caution

[Ref. 12: p. 16].

3. Ccding is but a small part of tae maintenance effort.

The critical area of maintenance lies ir under-

standing the program and what must be changed. There

exists no acceptable metric for measurinj the rate at

which a human may understand a complex problem.

4. There exists a tendency to penalize HOL Frcgram in

favor of assembly language programs when usirg a

"lines of code" metric. Assembly languages require

more lines of code to implement a given function than

0 HCL, thus more lines of assembly code can be rrcduced

by a programmer during the coding portion of mainte-

nance [Ref. 26: p. 41].

A more useful definition of prcgrammer productivity

may be in terms of programming functions per unit of time

[Ref. 27: p.34].

2. Ccmputer Attributes

Size and age: Physical attributes of the host computer that

affect software maintenance include the size (eg. mairframe

• or mini), the age, memory constraints, machine constraints,

and the cperating system it will support. A large computer

will support more sophisticated software tools than a

smaller computer of the same age [Ref. 1: p. 460], and a new

* mini may have more capability than an older mainframe. The

age of a computer is critical in terms of vendor support

(enthusiasm to support a given architecture declines with

time), processing capacity, memory and software

* sophistication.

46

4!

Memory constraints: limitations are imposed on the Ferform-

ance of software maintenance ly the size of the available

memory. A machine whcse production work consumes 90Z of its

memory leaves little to dedicate to enhancement maintenance.

Machine constraints: Machine constraints are the character-

istics of a particular computer that may adversely ixpact
software maintenance. These may include such characteris-

tics as unique architecture, high operating costs or a

machine-specific language version. Such constraints vary

from activity to activity, but it is sufficient to say that

a software manager shculd be aware of the limitations of the

host computer.

Operating system: A sophisticated operating system enhances

the productivity of zaintenance personnel by allowing inter-

active testing and debugging. Turnaround time (the time

between the entry of a command or a program and the comput-

er's response) impacts the speed with which maintenance may

Frogress. A sophisticated operating system that supports

virtual memory and a wide range of software tools is far

more conducive to effective maintenance than a batch-

oriented orerating system supporting a compiler.

Access of maintenance personnel to computer: The number of

terminals dedicated to maintenance personnel, and the Foli-

cies regarding teriinal use.

4 Scheduling priorities: The priority given to mainterar.ce

functions. This is primarily a management concern, and

requires both an awareness of and commitment to the ipcr-

tance of software maintenance.

7

4

47

4

3. Software Tools

Number and type of software tools that may be

applied to software maintenance. Tools are discussed more

fully in Chapter VII.

4. Proqram.minq Techniques and Stindards

The extent to which modern programming practices

(structured programiring, information Liding, etc) are

applied to software maintenance. Programming technigues are

also discussed more fully in Chapter VII. Some measure of

modern programming practices used are common to the ma4crity

cf cost estimation mcdels studied.

5. Data Base

The implications of data base to software mainte-

nance are discussed in Chapter VIII.

C. RECCIMENDATIONS

While the data base reguired to estimate software main-

tenance costs often exists, the data are non-homogeneous.

There are no definitive standard metrics; only a collection

of interpretations. The definition of software maintenance

itself may vary within an organization itself. A software

manager who subscribes to the exclusive definition may be

replaced by one who Irefers the inclusive definition. Any

data collected in tle past would be of little value tc the

current manager. The definition of software maintenance

also freguently varies from activity to activity.

Additionally, the definitions of "lines of code" and
0 "complexity" may vary from activity to activity. The data

collected using interpretive metrics are generally unusable

outside cf its source environment.

48

.0 . " . .

Tc accurately cstimate software maintenancc ccsts,

thezEfcre, it is necessary to start with a standardized set

cf data. A standardized set of data must be collected using

standard, universal metrics. It is hoped that DoD and

industry may agree upon a uniform set of software metrics.

Once a standard set of software metrics for cost estima-

tion is derived, data must be collected, stored in a

,centralized location, and applied to existing cost estima-

ticn models. The use of standard data would go far to

improving the accuracy of current models. Analyses of the

data may then be ccnducted that will result in the next

generaticn of more precise, mcre accurate, and viable soft-

ware cost estimating methodologies. A uniform data collec-

tion instrument must be designed that will enable data

collection in a consistent manner. This approach is manda-

tory tc avoid problems arising over which data to collect,

when to collect it, and how to maintain the data in a

machine readable format for storage and analysis.

44

V. MAINTENANCE COST ESTIMATION

A. OVIRVIEW

The use of the term "art" to describe the process of

estimating software maintenance costs is particularly apt.

While much research has been devoted to software develcpment

cost estimation, little has been devoted to maintenance cost

estimation. Indeed, until the Lientz and Swanson study

[Ref. 2] the characteristics of software maintenance and the

factors that influence it were imperfectly understood. many

techniques and parametric models exist today to estimate

develoEment costs but the few models available to estimate

maintenance costs are simply extensions of existing develop-

ment models, and generally assume that the same factors

influencing development costs will also influence mainte-

nance costs [Ref. 1: F. 536, 13: p. 7].

A broad distincticn of approaches to estimating software

maintenance costs include traditional methods and parametric

models. Traditional methods rely primarily on the estima-

tor's (or group of estimators') experienced judgement.

Parametric models presume that relationships exist between

costs and certain software characteristics [Ref. 17: p. 9".

E. TBADITIONAL METHCrS

Direct Estimating

Direct Estimating is the application of experienced

judgement in its purest form. The cost estimate is made

based on the individual's knowledge, experience and judge-

ment. Current knowledge and experience relative to the

particular activity being estimated is vital to a creditable

estimate. Excellent judgement is critical since future

50

maintEnance ictivitits ire not ±t to t, t .e same as

previcus ci.cs. Dircct esti atin V LitC

decompositicn to 'vieli a more accurate estimate. The so.t-

ware system may be decomposed into successiviy lower finc-

tional sutcomponents. "hen a low enough level is reachec to

estimate accurately, the estimator applies any' aEjropriate

techni-ue to estimate each comFonent's cost. Tatle V shows S

a possitle subdivision of maintenance into fun ztional

subcomponents.

F TABLE V

Software Maintenance Functions
S

Manaiement/Supervision Planning, directing, coor-
.inating , and confrollirg
software maintenance activity

Administration general office support

Analysis studying a software problem
prior to taking action

Design developing a solution to a
software problem

Proqramminq coding and unit testing cf
software changes

Sstfm Testing formal testing of a changed Isoftware testing

Ccnfiauration Control upkeep of master programlibraries, backup tapes,program listings, etc

Documentation making changes to user
manuals, specifications,
test plans, etc

Traininq train users on program
changes, training of new soft-
ware maintenance personnel

[BEf. 17: p. 9]

51

The use of direct estimating and decomposition (essen-

tially bottom-up estimating) offers the advantages of
enhanced estimate quality since random error in the system

estimate will be reduced by accumulatinj subcomponent esti-

mates, and Ly enhancirg the understanding of both the system

and the maintenance task.

Analogy

Analogy is similar to direct estimating, and involves

comparing the estimated effort of performing maintenance on

a program with similar historical examples. The experience

of ancther project serves as a baseline for the estimate,

which is then Rodified by differences in project character-

istics and available resources.

Judgement Enhancing lechniques

Judgement enhancing techniques are primarily based on

experienced judgement. The accuracy oi the estimatc is

enhanced through the use of methods that reduce the depen-

dence upon one individual's judgements. These include Crcu

Consensus or averaging. A group consensus technique may be

a typical zeeting, two individuals discussing the matter

over lunch, cr the more formal Delphi technique. 7he

Widetan.J Delphi technique (Ref. 1: p. 335] seeks to inarcve

the feedtack of the Delphi technique and still avoid the

pitfalls of group dynamics in a typical meeting. The

process is time consuming, but

... ha. been highly successful in combining the free
discussion advantages of the group meeting technique and
the advantages of anonymous estimation of the standard
Delphi technique (REf. 1: p. 335).

A straightforwdrd technique is to average several indepen-

dent estimates. The independent estimates may be cttained

using various estimating methods.

52

Traditional methcds offer the software manager ease of

use and familiarity cf approach. Reasonatle estizates of

software maintenance costs may be obtained usin traditional

methcds. However, the validity of the estimate renains

dependent upon the atility of an individual (or grcup) to

correctly analyze the past and make a valid judgenent fcr

tihe future. The analysis of the past may Le affectel by

incomplete recall, b'iases, and inappropriate focus ("didn't

see the forest for the trees"). The judgement of the future

may be influenced by optimism, incomplete understandir of

t .e existing system, or the pressure of deadlines and

superiors.

C. PBAMETRIC MODELS

Parametric models presume that -uantifiable relaticn-

ships exist between software maintenance costs and certain

software characteristics [Ref. 17: p. 9]. Such relaticr.-

ships are usually Suantified by statistical analysis of

historical software cost data. Once quantified, the rela-

tionships become variables that serve as major cost drivers

in mathematical models.

Parametric models may take either a macro or a micro-

level approach, or Employ a combination of both. In a

micro-level approach, the model addresses the individual

components of a system. This approach offers the advantages

of deccposition: reducing the system to components for

wizh the level of effort may be easily estimated, and

enhancing the softuare manager's understanding of the

system. A macro-level approach focuses instead on the

overall system and its interaction with the environment. A

macro-level model is more apt to deal adequately uitl the

effects cf external factors, while a micro-level approach is

likely to he more effective in estimating pctential

53

maintenance ripple effects. Parametric models have been

categori2ed in a number of ways by different studies

[Ref. 1: pp. 329, 19: p. 4-11, 17: pp. 7-12]. The authcrs

feel that categories based upon how the model itself was

derived are of more value that ones based upon the charac-

teristics of the model. Such a distinction should aid a

software manager in deciding the applicability of a model to

his or her own envircnment. Robert TaiLodeau [Ref. 19: p.
4-11] presents the fcllowing categories:

Regression: A class of model structures whose design is

based on the selecticn of the life cycle element of interest

(e.g., life cycle effort, development effort, or ccding

effort) and a hypotlesized relationship between the element

and a number of selected inputs. The parameters of the

hypothesized relationship are obtained by regressior and the

model becomes a single cost estimating relationship.

Heuristic: This model structure combines observation

and interpretation with supposition. It is the fcrial
representation of the subjective process of applying experi-

ence. Relationships among variables are stated without

justification (e.g., cost per pound decreases with

increasing size, development effort is related to type of

application). Then subjective , semi-empirical, or empir-

ical adjustments are made to the base estimate. Heuristic

models ccmbine a number of different estimating techniques.

Phencmenological: This type of model incorporates a

concept that is explained in terms of a basic phencenon

that is not limited to the mechanics of software

development.

Parametric models offer the software manager several

advantages.

1. They are objective and not strongly influenced by

personal biases or motivation.

54

A]
2. They are repeatable, given the same input parameters.

3. They objectively represent historical cost experience

and are calibrated by historical data.

4. They are efficient and able to support further esti-

mates or sensitivity analysis.

5. They are easily automated.

6. Finally, they offer a supportable conclusion, one

more likely to survive the scrutiny of budget-

ccnscious superiors.

While parametric model are superior to traditional

methods in most respects, they are not, however, pertect.

Most models are not satisfactory for wide range of aplica-

tions without considerable adjustment. The disadvantages of

parametric models include:

1. Historical data used to derive and calibrate the

model may not accuratedly represent the present or

future. Research to date on software cost estimation

has often been based on systems developed using out-

mcded, inefficient methods.

2. They are unable to deal with exceptional conditicns.

3. Models cannot compensate for poor estimates of para-

metric values (garbage in - garbage out).

4. The majority of models available are either not

applicable to the maintenance problem or represent it

imperfectly [Ref. 1: p. 342].

Parametric models can be used to estimate software main-

tenance costs with reasonable accuracy. As with any tocl,

the tocl user must fully understand how the tool operates

and hcw to use it effectively. Effective use of parametric

models tc estimate software maintenance costs require under-

standing several key issues.

55

I.

1. Every model is dependent upon experienced judgeMent

for its parametric values. This is particularly true
for subjective factors such as system complexity and

experience of personnel. There is no realistic way

to avoid using experienced judgement to estimate

maintenance costs regardless of the method selected.

2. The model must be calibrated to one's own environ-

ment. The model itself is normally developed from a

representative sample, as in Barry Boehm's CCCCMO

[Ref. 1], Or from an observed phenomenon of software

development, as in Lawrence Putnam's SLIM (Ref. 13].

modifications of certain parameters must be made to

"fit" the model to a particular environment. These

modifications can be done either by the software

manager or by an expert consultant with experience in

the model. Either way, the calibration process is

almost entirely judgement-dependent.

3. The software manager must have access to considerable

historical data about the system being maintained and

the maintenance environment. This data is critical

to estimating parametric values and calibrating the

mcU l. Unfortunately, few software activities uidfr-

stand the impctance of accurate records of software

maintenance, nor are they aware of what characteris-

tics of the software and of the environment should bp

mcnitored and recorded to support the cost estimation

function. Data management and its relation to soft-

ware maintenance is addressed in Chapter VIII, while

a discussion cf the characteristics of software and

the environment that should be monitored and recorded
0 was discussed in Chapter IV.

56

D. ESMIMATING SAINTEBUACE COSTS

Several different software cost estimating models have

been developed and used by DoD and industry, with varyinc

results. This thesis will not evaluate any particular

model. A summary of studies done to evaluate existing

models is presented in [Ref. 28: p. 10]. Instead, this

section will focus on considerations fgr planning an esti-

mate, criteria to subjectively evaluate a software cost

estimating model, and will summarize a view of the status of

software cost estimation within DoD.

1. Planning an Estimate

Developing an accurate software maintenance cost

estimate reguires a significant amount of effort. The soft-

ware manager should Elan the estimate just as any project.

The process for planning an estimate developed by Barry

Boehm [Ref. 1: pp. 310-328] and tailored for software main-

tenance by G. Klemas [Ref. 17: pp. 30-31] is summarized in

Table VI.

2. Evaluatin_ a Software Maintenance Cost Model

How can a software manager evaluate the applicability of a

particular model to his or her own environment. 3arry W.

Boehm cffers the follcwing criteria:

1. Definition: Has the model clearly defined the costs

it is estimating, and the costs it is excluding?

2. Fidelity: Are the estimates close to the actual costs

expended on the projects?

3. Objectivity: Loes the model avoid allocating most of

the software cost variance to poorly calibrated

subjective factors (such as complexity)? Is it diffi-

cult to jigger the model to obtain any result you

want?

57

r ITABLE VI
Software Maintenance Cost Estimating Procedure

1. Determine thE iurpose and objective of the esti-
mate. Identift all costs that need to be included in
the estimate and establish accuracy rejuirements.

2. Prepare the estimate plan, stating purpose,
objectives and requirements of the estimate.
Determine data and expertise needed to make the esti-
mate, and decide upon a techniqae Specify resources
and time needed tc make the es imate.

3. Beview the plan. Verify objective validity and
resource availability.

4. Gather the necessary data. This stage will he
rElativeiy direct for an existing system provided
there is a current program maintenance manual. f an
estimate needs to De done for a recently deliverel
system, obtain as much data as possible about its
develoiment. Cowzare with the best historical data
availa le on similar systems.

5. Cbtain several independent estimates usinq
various models. Evaluate applicability of a model t6
estimating situation, and calibrate io own environ-
ment. Apply experienced judgement to independent
estimates and derive an estimate that optimally satis-
fies the software maintenance requirements.

6. Verify that the estimate makes sense.

7. Document the verified estimate and stand ready tochange it.

4. Ccnstructiveness: Can a user tell why the model

gives the estimate it does? Does it help the user

understand the software job to be done?

5. Detail: Does the model easily accorumodate the esti-

mation of a software system consisting of a number ot

subsystems and units? Does it give accurate Ehase

and activity breakdowns?

6. Stability: Do small difference in inputs produce

small differences in output cost estimates?

58

° - --. -

7. Scope Does the model cover the class of software

projects whose cost you need to estimate?

8. Ease of use: Are the model inputs and opticns easy

to understand and specify?

9. Parsimony: Does the model avoid the use of highly

redundant factcrs, or factors which make no appreci-

able contribution to the results.? [Ref. 1: p. 476]

E. DEPAETSENT OF DEUINSE AND SOFTWARE COST ESTIMATING

Depa tment of Defense has a requirement for a software

cost estimating model and methodology at three stages cf the

software lifecycle [Ref. 28: pp. D19-22).

1. Requirements Analysis: The objective here is to

examine long-range costs of the software given a reasonable

system pioposal. Cost/risk assessments and budgetary esti-

mates are performed here. Table VII shows the required

inputs and outputs of such a model. The accuracy required

by a model in the requirements analysis phase is less than

or equal to 50%.

2. Specificatict and Design: A software cost esti-

mating methodology can be used to assist the government or

contractor in estimating the costs of a particular system

design on either a near-term or longer-term lifecycle cost

basis. The majority of the existing models take this

perspective. Table VIII shows the required inputs and

outputs of such a model. Estimate accuracy required in this

phase is within 25% of the actual.

3. Development, Cperations and Maintenance: A software

cost estimating methodology can be used to assess the cost

impact of changes during the development phase, and estimate
the cost of implementing a change during the operations and

maintenance phase. Iable IX shows the required inputs and

outputs of such a model. Required model estimate accuracy is

within 10% of actual values.

59

6I

TABLE VII

Model Parameters for Requirements Analysis Phase

INPUil DATA OUTPUT DATA

System Requirements Long Range Budget
I erformance Projections
esting system R & D

prototypes I
Support Philosophy produc ion est.

maintenance maintenance est.
manning

T chnclogy
hardware
software

Historical System Data Base I
similar systems i
similar technologies I
similar methodclogies

(Ref. 28: p. D21]

A major element of the DoD Software cost estimation

goals is establishing a reasonable, representative and stan-

dardized methodology [Ref. 28: p. D23]. DoD should not

adopt any specific model and declare it the standard; no

model offers the accuracy required by DoD, nor does any

model adequately represent each phase of the lifecycle

(Ref. 19: p. 5-29, 28: p. 16]. Instead, DoD should

secify the general procedu;e for estimating soft-'ariecosts (i.e. , major activities, model selection,
model documentation, estimate documentation and manage-
'nent actions required to use the results of an software
cost estimation effort). The establishmen of this
estimatirg methodclogy should be in concert with thedata collection gcals and should make use of the data
collected to "fine-tune" current models and develop new
nodels The model methodology developed should pcssess
the following attrirutes: [Ref. 28: p. 24]

60

TABLE VIII

Model Parameters in Specification and Design Phase

INPUI DATA OUTPUT DATA

System Requirements Lcng Range Budget
performance Projec tion
testing system R S Dproto types

Documentation Regmts production est.
MIL-STD maintenance est.
commercial

Mgmt Support Activities
Schedule Requirements trade-off analysis

risk analysis
Support Philosophy resource mix

government impact assessment
ccntractor -schedule
manning -personnel

Cost Estimates Development Cost
system LCC Estimates
hardware software
software hardware
actual vs predicted support

maintenance
Technology documentation

hardware facilities
software manning

Historical Data
similar systems
similar technologies
similar methodclogies

[Ref. 28: p. D22)

I---- -- -- J

C~en disciplire: The metaodolo~y should bE flexitle

and adaptable to specific environments. The proce-

dure for selecting a specific model should allcw for

the exercise cf discretion.

e The use of multiple models: The methodology should

allow for the employment of a number of models as

required by the lifecycle phase of for the

application.

61

* p '

F TABLE II
Model Parameters in Development and Maintenance Phase

INPUT DATA OUTPUT DATA

Schedule Manhours by Function
design

Software code
Characteristics test

lines of code documentation, etc.
larguagScd
ccmplexity Schedule

Testing Requirements

Support Toolscuport softwareies software

support personnel

Test Facility Capabilities

[Ref. 28: p. 24]

R Reproducible: The methcdology used should yield the

same estimate of cost given the same data and

situation.

* Living methodclogy: The methodology must te updated

constantly to reflect the current state of software

technology. This is achieved through institutional-

izing methodology and through DoD instructions, regu-

lations and standards.

Desirable characteristics of a software maintenance cost

molel include:

1. Automated execution

2. Transportable for all commonly used computers.

Written in HOL.

62

3. Model algorithms should be thoroughly documented and

available to all users.

4. Outputs should be flexitle and tailorable to several

applications.

5. The total set of models should cover the whole soft-

ware lifecycle, although individual models may be

specific to certain phases or certain applications

6. Models should deal effectively with missing data.

7. Models should be conservative of use of resources for

data loading ard computer time [Ref. 28: p. 26].

Desirable outputs of a model include:

1. Total manpower effort by phase and by effort type

2. Reasonable development time

3. Amount of documentation required

4. Staffing profile

5. Ccmjuter costs

6. Cost-schedule trade-off factors

7. Sensitivity of output to input variations

8. Expected maintenance required

9. Milestone occurance times

10. Risk Profile [Ref. 28: pp. 26-27]

F. 7HE DEATH OF SOF7NARE

An early objective of this thesis was to propose a model

for predicting the pcint at which the software system must

he replaced. That cbjective was beyond the scope of our

effort. instead, some views are offered on what to think

about.

It has been demonstrated that there are no hard and fast

rules that may be used to accurately predict the lifespan of
0

a system. Many factors come into play, and the influence of

any factor varies considerably from system to system.

0

63

0

In general, the lifespan of a system may be said to be over
if:

*It fails to adapt to change

*It is replaced by another system performing the

same function [Ref. 29: p. 32].

While replacement of software is conclusive and cbvious,

failure of software to adapt to change reguires further

explanation. Four primary changes [Ref. 29: pp. 32-33] may

caise the death of a software system:

1. Hardware changes: Changes of this nature may he as

catastrophic as the replacement of the entire

computer system or as relatively simple as the expan-

sion of peripherals. In either case, software

systems wri.ten in machine-specific language may well

he doomed. Even so-called "standard" languages like

CCBCL and FORFAN are not immune, there being almost

as many versicns of these standard languages as there

are computer manufacturers. Computer manufacturers

recognize the difficulty of converting software

systems and advertise compatibility between their

product and a ccmpetitor's. The vendor's definition

of compatibility and the user's may differ consider-

atly, however.

2. Software changes: All software systems depend ulon
others. Applications programs depend upcn other

programs for input and the operating system for

resource control. The operating system in turn,

relies upon its compilers and utilities. A major

source of software change is the manufacturer's

system software, the package of operating system and

associated utilities required to operate the computer

system. A change to system software may have a

64

*

4

catastrophic impact on appiJoaticn s:)ftire s,;ste::s,

but usually system changes occIr inIcreMentaIly. The

application systen must therefore adapt to eac::

incremental change, or risk being rendered incoper-

able.

3. Changes in requirements: As previously notEd,

enhancements due to user requests are the major

scurce of software maintenance. Many user requests

result from a change in user requirementz, Cften

because the requirements were poorly thought cut in

the original design. If the original design or the

software system's internal factors are such that

modifications cannot be made to meet changes in

requirements, the system falls into disuse and should

4 be replaced with a system that can be evolved.

4. Changes caused by errors: All software contains

errors. Correcting any single error usually intro-

duces 0.5 further errors [Ref. 29: p. 33], so the

error correcticn process never ends. Software that

becomes riddled with errors is abandoned by users,

and dies. Sufficient resources must be applied to

the correction of errors to keep a given software

system viable and healthy.

Given that software must change in order to survive, how

can a manager econcmically justify any given change in the

software? How does a manager know when to end the life-

4 cycle of a software system and replace it with another? The

answer is complex, and is influenced by economic factors,

variable (and unknown) user reguirements, rapid new techno-

logical advancements and other practical considerations.

4 The perceived benefit of the existing system can be

thought of as the capabilities of the system and the value

those capabilities have within the organization. This is

cl* drly a subjective evaluation, and may be characterized as

I

65

4

,-.4

thi software manager's answer to the uestion: "What does

th-s system do and what is the value ol ;hit it Ioes to :he

organization?" The software manager must then compare the

benefit cf the system to the ccst of operating the system.

7i.e seccrd portion of the docision rule deals wi.th comparing

t:.se existinj system i th the proposed replacement in two

wUs. First, the marginal cost of maintaining tne existing

system is compared to the marginal cost of implementing the

prJosed rejlacement. The method for comparing the costs of

the two systems is prcbabiy best done using a marginal cost

representation, such as the unit cost per transaction.

Second, the perceived benefit of the existing system is

conpared to the perceived benefit of the proposed replace-

mexit. The replacement system must be at least as capal.-i
(i.e., egjual perceived benefit) as the existing system.

Cnce the decision has been made to replace tne existing

system, the software manager must also decide the timing of

the replacement. The benefit to the organization (in terms

of capital and resources) of keeping the existing system for

one more year should be compared to the additional capalili-

ties expected from the proposed replacement if implemented

this year.

The software manager's replacement decision rule may he

stated as:

If the perceived benefit of the existing system is

exceeded by the ccst of obtaining tnat benefit, and if

the marginal cost of the existing system exceeds thp

marginal cost of the proposed replacement (including a

factor for reliability problems with the new system),

then the existing system should be replaced.

It is implied in the decision rule that there exits the

opportcnity cost of not having the use of the proposed

replacement that must also be considered.

66

61

In th'e past, tfE major cbstacle to replacing a x±t:j

has been the con~siderable cost ard uncertainty involvEd in3

develo~irg software systems. This is true even today.. T 1- C

future hclds promise,through the use of so-c-alEd zourth-

IGI

generaticn languages and advanced software tools, of grEatly

reduced development cycles and considerably enhanced system

reliatility.

67

C1

0"

VI. PERSONNEL CONSIDERATIONS

A. INTRCDUCTION

The DoD Joint SErvice Task Force Feport on Software

Froblems stated that "...people are the most iMnportant

resource in any software or support effort" [Ref. 31: p.

24]. While the cost of hardware plummets, the cost o-

people is rising. By 1985 the cost of hardware will be at

one-tenth the 1979 rate, and the cost of people will be at

twice the 1979 rate [Bef. 32]. With manpower as the domi-

nant Element of cost in performing software mainterance,

the software manager must better understand the critical

aspects of personnel management in software maintenance.

Considerable gains can be achieved through effective manage-

ment of maintenance personnel and of the maintenance func-

tion. The personnel issue will be examined from two

perspectives; that of skills and attributes are recuired in

a maintenance programmer, and how to best organize mainte-

nance personnel to accomplish the maintenance function.

B. SKILLS AND EXPERIINCE NEEDED IN SOFTWARE MAINTENANCE

The skills and experience reguired by the maintenance

pro ramoer are well summarized by a ,uote from the Pehbtexan

document.'

Tc make this situation vivid, consider a navigation
module on a supersonic aircraft. Let us suppose that
the navigation module is supposed to provide te correct
position of the aircraft to within 10 meters anywhere in

IPebtleman is one of a series of Department of Defense
(DoD analysis papers which lead to the creation of the DoD
standard language, Ada. Ada is a relistered trademark of
the U.S. Department of Defense [Ref. 33].

68

0

the atmosphere of the earth. The module obtains input
frcz g'ros, accelercmeters, clocks, doppler radars and
navication signal receptors which can listen to satel-
lite'and ground station signals. Suppose it has been
determined (perhaps by exercise or self- diagnosing
interface monitoring procedures and execution of fault-
detection decision trees) that none of the inut devices
is Fsic1 malfuncticning. But suppose that he results
pro uced by the module are consistently in error.

let us further suppose that the actual error is a
superimposition of errors from three separate sources:
(1) a simple programming error involving unintentional
clcbbcring of *the contents of a global variable bya
local procedure hich incorrectiy assumes that the
global variable is local, (2) the decay in numerical
accuracy of a certain class of computations through
inadequate numerical analysis of error propagation, and
(3) failure to design he module to take account of
coriolis force, leading to systematic errors on north-
south trajectories at high mach numbers.

Each of these error sources might fall within the
province of distinct skills at the command of distinct
rained specialists. Only a physicist familiar with the

laws of kinematics and aynamics might be expected to
realize and correct the coriolis force error. Only a
numerical analvst familiar with the laws of numerical
error propagation might be expected to discover and
correct the error of numerical accuracy decay. And only
a programmer trained in the use of nomenclature scope
rules in the programming language used to implement the
module might be expected to discover and correct the
error of unintenticnal information clobbering.

If the actual error is a superimposition of these
sorts of errors at these three sorts of levels of
program logic, it is doubtful that a maintainer trained
only in one of the three relevant skills, could succeed
in untangling the superimposed errors, in isolating
their sources, and in making appropriate corrections.

In a similar vein, if the system is being enhanced to
meet new requirements, the skills cf re uirement
analysts and designers may be required to mo ify the
requirements and the design incrementally and to bring
the requirements and design documents up-to-date consis-
tent with the enhancement. In fact because of the
presence of more ccnstraints, incremental reanalysis and
redesigni might be more difficult than oriinai analysis
and desiqn. It may not be enough for the maintainer
skilled 6nly in the implementation, test, and integra-
tion phases of the so tware life cycle fo perform acts
of enhancement that call for the replay of skills exer-
cised by teams of skilled specialists at earlier life

cle phases -- teams now isbanded and unavailable.
'ins is particularly likely to be true if the require-
ments and design levels of the system being en anced
demand skilled thinking in application domains widely
separate from programming.

But we know that maintenance and enhancement may tend
to cccur under circumstances under which the original
teams that performed the high level logic analysis and
desiqn (and which rsed special application domain skills
remote from programming skills) have long since
disbanded, leaving maintenance an enhancement tasks tc
those unskilled in the higher logic levels of the

69

I]

system. Such maintenance circumstances are unpropiticus
unless techniques can be found to determine when to call
in or recongregate teams of skilled specialists neededfor fault detection, repair, cr enhancement. [Ref. 7]

Thus, to summarize, a maintenance programmer must be a

highly-skilled individual with the following qualities:

1. Skilled in the programming language used in the

activity and well-versed in obscure features whose

use by development personnel may hide subtle errcrs.

2. Knowledgeable in the function of the system and able

tc detect errors in logic.

3. Possess the keen, incisive mind of a detective who

enjoys the challenge of sifting through obscure

clues.

4. Possess all the skills reciuired in software develop-

mcnt, including those cf the recuirements analysts,

system designers and technical writers (to update the

documentation).

5. Be determined and optimistic.

6. Have a keen awareness of human psychology in crder to

understand the logic of the original develcpment

programmer.

Unfortunately, the maintenance programmer rarely

embodies all these qualities. Normally, he or she is rela-

tively inexperienced and new at the organizaticn.

Programmers were often started out in software maintenance

to train them for the "real job" of software development. A

programmer is thrust into working on old software systems

runnirg on obsolete equipment and managed in a crisis mode.

The novice programmer learns to patch systems "to keep them

rinning", gaining little job satisfaction and rarely seeing

a jot well done and ccmpleted as his counterpart in develop-

ment would. As patches accumulate upon pat les, the system

gradually deteriorates.

70

-

A

A reason that scftware maintenance has become the hcme

of the inexperienced and the ineffective lies in the poor

connctation of the term "maintenance", . The proler of

management perceptic and the status of XaintenaLce

personnel was a serious point of discussion in the sessioL

on Management of Scftware .airtenaace at the Software

Faintenance Workshop, held at the Naval Postgraduate Sclocl,

M onterey, California, December 6-8, 1983. Maintenance in

the physical sense iaplies simply repairing the structure

without making any real changes, something akin to scrapping

the rust off a bridge. That is hardly the case in software

maintenance. It has been shown that software maintenance is

largely designing and implementing user-requested enhance-

ments, an activity very similar to system develcpment

although lacking the advantages of a dedicated and trained

development staff. The correction of failures, the

"scraping off the rust", is only a small part of the total

software maintenance picture. Software maintenance is a

highly demanding and vital function, filly deserving of

management recognition. Management must take steps to

recognize the importance of software maintenance and enhance

the status of the maintenance programmer.

* Some psychological testing would seem to be appropriate

to test the individual for some or all of these beneficial

or hindering traits. Schneiderman highlights some of the

tests in use, but also notes that our understanding of thei

is shallcw [Ref. 34: rp. 57 - 62]. Some of the tests avail-

able include:

Myers-Priggs Type Indicator (METI) which gives insight

into the perscnality dimensions of the Erogrammei of

extroversion/introversion, sensil, g/intuiticn,

thinking/feeling, judging/perception. The interac-

ticns of these pairings of traits is more injortant

tL.an the preference itself.

71

4bp

* Minnesota .ultiphasic Personality Inventory (MMPI)

which is used to determine information about the

person's desire to please, honesty and candor.

a Strong Vocational Interest Blank (SVIB) which matches

the individual's likes and dislikes with other members

of specific professions.

e Ccmputer Programming Aptitude Battery (CPAB) tests

verbal meaning, mathematical reasoning, letter sense,

number ability, and diagramming skill.

* Berger Test of Programming Proficiency (BTOPP) is

designed to measure an individual's knowledge and

proficiency in the basic principles and technigues of

programming [Ref. 34: p. 61].

Validaticn and imprcvement of these and other tests are

still reeded.

The development and availability of personnel with the

IC roper skills is no small matter. All personnel are

confronted with the problem of maintaining currency in a

rapidly changing techrology. In the data processing ccmmu-

nity in general demand exceeds supply, but within the

Department of Defense the problem has added dimensions

[ef. 31] that arise from the three areas where the

personnel may be drawn, namely: the military, civil service

or ccntzactors.

1. Militar

The service plicy of rotating officers every two to

three years reduces and disrupts the supply of qualified

4 personnel. This is exacerbated by the Army and Navy policy

of also rotating those officers trained in data processing

into and out of assignments far removed from the computer

field.

72

Cn the enlisted side the problems are intensifiel

due to lucrative employment opportunities within irdustzy.

Once an individual is trained, the prospects of high-payinq

jobs cn the outside are very good. A U. S. Air Force study

[Ref. 35: pp. 1-5] revealed that the second term retention

rate 2 is only about 50Z for certain computer rescurce

skills.

2. Civil Service

Although the Joint service report :Ref. 31] is

directed at the entire life cycle of embedded comEater

systems, the problem cf availability of skilled personnel is

still the same for computer software maintenance in general.

For the civil service work force, maintenance personrel must

stay current in a number of closely related fields,

including computer science and engineering, but the means to

do so may be thwarted hy government employment regulaticns.

..The personnel Froblem is exacerbated by the limita-
tion of most entry level and middle technical/mana ement
civil service positions to the Engineering (G -800)
series in the Commands that acguire ECS Cembedded
comcuter software]. This excludes computer science a,.
oth~r related degree fields from DursuinJ careers D_
shifting to careers involving ECS' ac4uisition. 7t
should be noted that Civil Service regulations currently
prchitit advertising a position as interdisciFlinary
when one of the disciplines is a "Professional" series
(as is the GS-800 Engineering Series). [Ref. 31: p. 25]

From another report on maintenance in the commercial

sector, Lientz gives a figure of 20-30% shortage naticrally

cf systems personnel [Ref. 36: p. 9]. Lientz suggests that

users may have to fill in this gap between the supply and

demand of programming personnel, but that can only happen if

advanced software tools, such as fourth generation

2 A second term retention refers to an individual makinc
a second obligation to military service after the completion
of the first term of enlistment normally 4-6 years.

73

languages, are available to simplify the task. Tools are

discussed in the next chapter.

3. Contractors

The problems with military and civil service labor

cften forces a heavy reliance on contractors. This dejen-

dency on contractors has pro'blems of its own.

* The contract performance must still be monitcrei by

scmecne knowledgeable in the field.

• Ccntractor perscnnel must be trained in the system.

This may become counter-productive as turnovers within

the contractor's organization occur over which the xili-

tary manager has no control or when a contract is not

reneued.

* The required competition for renewal of a contract and

possible loss to another firm drains the ccrpcrate

kncwledge regarding the system.

* The use of contracted software creates long learning

curves when training personnel to maintain any specific

system.

C. P1ESCNNEL ATTRIBUTES

The specific interdependent tersonntl attrih,:es

required for the maintenance programmer go d long wa-' tCo -r

forming the maintenance programmer in somewhat the samE ,i"

as a ::evelopment progiammer, but wit!. a twist. Ps S

discu-ssd earlier, tle familiarity wita the apilication,

language and the hardware environment are still important,

hut in the case cf the maintenance programmer for a

different underlying reason. The maintainer is often called

upon to fix a system in a crisis mode or try to deal with a

74

r1

system that h.as little if any documentation. AL ideal would

he tc have the programmer or just someone w,o part'cipatei

4 in the design, available to respond when the documentation

is inadeguate (if there is even documentation at all). As

can be seen, the maintenance programmer is a different kind

of programmer with different productivity measures that can

he advocated on the development side where the progra~min-

team approach is to produce "egoless" programming frcm a

democratic group apprcach of a joint effort [Ref. 37]. This

encourages the exchance of ideas and reduces the cwnershir

4cf prcgrams.

Glass suggests that the maintenance programner will

always remain the bastion Cf the individual wcrker

[Ref. 231. The individual certainly must respond to any

number of applications with a detective's curiosity tc find

clues to the problem where they are not readily availazle.

In maintenance work there is much more of an interface with

the user creating immediate feedback and frequent rewards

when the users are happy. Martin and ?!cClure carry this

further saying there is a place for the team approach still

in maintenance programming [Ref. 25: pp. 429-435]. This

approach can help the training of maintenance programxers as

well as exchange of ideas on the various applications for

which the group is responsible. A complement to the team

approach is presented in [Ref. 38], and suggests that

suppcrt personnel such as a librarian to monitor and rain-

tain the documentation and a archivist to monitor and main-

tain file updates are needed. The "egoless" attitude of

getting the opinion cf another programmer on a Frcblem or

the implementation of a change should help to produce more

error-free programminj as well as being a good learning

tool. One drawback still may be the size of the maintenance

organization. A very small maintenance shop may not have as

many olinions available to draw on though the attitude could

still be there.
7
75

I

D. A MAINTENANCE PRCGRAMMER PERSONALITY PROFILE

The result of all of the guestions of the organizaticn

of the perscnnel, and who is available to do what, may leave

hanging the identity of the individual involved in this

activity. From the many references, it would seem that this

individual must have good sound judgement, vast experience

and technical expertise, the ability to identify the needs

of the user, great understanding of existing software and

technical versatility. But, why is thlis multi-talented

individual made to be the inferior to the develcpment

programmer? The exact reasons don't need to be defined, hut

the concept has grown through a process of evolution partly

as a result of the definition of the term "maintenance"

programmer discussed in Chapter II.

Bronstein and Okamoto propose that there really are

separate types of individuals that should be working in the

development and maintenance areas [Ref. 39]. This break is

to be on the balance between an individual's "communication

styles". From [Ref. 39) Figure 6.1 shows the four different

psychic functions that combine to produce profiles cf indi-

vidual's attitudes, assumptions and reactions that make cne

more appropriate for different types of jobs. A definition

of the terms from Figure 6.1 are:

* Analyzer (thirker) places high value on facts and

figures and is good on judging relationships of

things; wants to be in control of work.

* Affiliator (feeler) places high value on personal

relationships; is flexible and thought of as a

supporter.

* Activator (senscr) places high value on the here and2

now; is assertive; and therefore, supports time

constraints.
0I

76

01

4"

* Concetualizer (intuitor) pldces a hign value on

kncwing the nature of things in terms of their cvezall

significance.

The level of each of these four functions may he ques-

tioned in relationship to the splits giver in Figure .I ,

hut there still points to the realization that accordiing to

one's ccmmu:.;cation style, a programmer may te mo e s-itei

for the maintenance environment as opposed to the devlcr-

ment enviroiament. Finding the individuals who are motrwte

ar. Lest suited for this ty:E of work will ai t a .a:, er

ir. havinQ ccmpetent ard productive employees.

The detailed example giver, at the Leiin cP Ijis

chapter aFplies to the military tactical side of Ercgram-

ming, but the variety of problems that any maintenance
programmer 'ill have to face will also cover the whole gamut

of activities of that specific organization. Ancther

example may be that of a space surveillance organization

which could involve the fields of orbital and space ihysics,

high level zathematics, intelligence processing, ccmmunica-

tions, etc. as well as data processing; a supply organiza-

tion could involve inventory control, budgetifg and

financial maragement, accounting, purchasing, etc. along

with data processing.

Some solutions can be seen in both getting better PEople

in these positions as well as giving them better tools,

environment and prestige in the work place.

E. OPGASIZATION

There has long been a discussion of the organizaticn of

the personnel irvolved in the various programming activi-

ties. his is as shown in the 1972 discussion in [Ref. 40]

of whether to have a separate programming organization

devoted to maintenance entirely separate from the group

77

I

I /AN Ar

AN-Aia z:e, C C
AF-Atfikato' C C
AC- ACc a
COOorcevtualze,

A salesperson must be able to communicate effecti.,ely In all st'sles. His4 stle profile might look like this.

7 AN A , A N A;: A N

A P

AC
AC C C CC0 AC

Systems Analyst Des:one, Coaer

People good at '.arious phases of programming might have profiles like
* these.

A F

CO

/AC

An effective and satisfied maintenance programmer often has this commu-
nication st'vle profile.

Figure 6.1 Communication Styles.

78

devoted to the develcpment Frccess. Tio skills nEEde in

both these areas piovide no definitive justification for

either approach. 'hen the same group of programmers is

involved in both the design and maintenance of systems,

there is a lot of cicss training going on whicn will make

any change Easier to implement.

On the one hand, current research into some solutions to

the 'Software Crisis' (Ref. 3, 11, 33] has concentrated in

finding better ways tc accomplish and manage the develorment

process. Methodologies such as Software ?.euirements

Engineering Methodclogy (SREM) developed for the U.S. Army's

Ballistic Missile program [Ref. 41] and Systems Analysis and

Design Technigue (SAj) 3 [Ref. 42] are comparatively new in

this area and have aided in providing an orderly approach to

the development process. These methodologies of SREM, SALT,

and others combine methods and tools with human factors to

aid in accomplishing the development process, such as to

decompcse the software into modules, provide a graphical

notation and control guidelines, sometime with the aid of

computer software system [Ref. 43]. On the other hand very

little of this has been done in the maintenance arena. This

area is cnly now getting the attention it deserves.

W

0

3 SADI is a trademark of Softech, Inc.

79

S

IJ

VII. TOOLS AND STANDARDS

A. IETECDUCTION

The resource of personnel is a dominant factcr influ-

encing scftware evolution. In the face of personnel demand

outstriping supply, the software maintenance manager must

obtain the maximum benefit from available resources. A

means of achieving this is through the integration cf soft-

ware tools into the maintenance effort. A software tcci is

an automated program or process that enhances or replaces

human effort. In Chapter III, Figure 2.1, it is pointed cut

that the bulk of a maintenance programmer's time (nearly

50")) is spent in trying to understand the existing software

system. Thus, tools that can aid the programmer in under-

standing software shculd be addressed first by the software

maintenance manager. Testing to maintain the integrity of

the system is also a large part of this process, which can

also be aided through the use of automated tools. The

following discussion relates the availability and use of

tools for the mainterance environment where it can improve

programmer productivity.

B. SYSTI VIEW

A more thorough view of the relationship between these

activities and the tccls available is in order, while still

considering the personnel issues addressed in the last

cnapter. The tools addressed here are for the most part

automated tools. While most of these tools discussed were

created for the !evelcpmnt environment rather than mainte-

na-ice, they are still very applicable to the maintenance

Frogramming function. A DoD report [Ref. 31: p. A-39]

80

oq

purports that in a total view of tn-e system, there can Le a

draalatic impact on software problems achieved through

supp~ort tools having five broad objectives. These CbJec-

tives are:

1. Inteyration

This is designed to provide an interface with the entire

environment viewed as cooperating functions.

2. E22rt

This brings the entire life cycle of the software together

especially implementing and validating tne c4ranres after a

svstex is designated operational.

3. Standardizaticn

In this rapidly expanding world of computers, standards are

designed for ease of transportation across a number of host

processors.

4 4. Supiport of Standard Ianauages

Within DcD or any specific organization tae designated stan-

dard languages must he supported by tools. In other words,

completely language and machine portable support tocls are

not required.

5. Flexibility and Maintainability

The tool itself must also he flexible and maintainatle

within the environmert to ease the evolutionary changes.

C. TCOLS

4 Software tools must therefore match the organization

within which they are to be found. This is a broad state-

ment a dressing the large variety of sizes of data

81

I°

processing crganizaticns that can he found eve:

authors' cw. experience within DoD. Cne ma

with software written in assembler languages

hardware all the way up to systems £rcvided ii

languages usiLg state-of-the-art hardware

techncloGies.

To avoid overly emphasizing either end of t]

the authcrs are presenting some broad views o.

may be helpful avoiding too much detail at e

this spectrum. The availability of some specif.

may meet the needs cf a specific environment

hy type and vendor in a table in [Ref. 25: pp.
in [Ref. 4: pp. 4-2 - 4-10]. A more current

the type and availability of tools may be

numerous trade journals, a preferred source in

changing ccmputer world. A list of sources t,

found in appendix A. A comprehensive list of s,

would not be feasible nor desirable, as it wou

obsolete.

These tools though can help deal with pas

styles. Tlis is not a criticism of past pra,

understanding of some of the problems facing t,

today. These include from [Ref. 39] :

e Maintaining programs written without stan

* Lack cf documentation and source.

* Different comrputers and languages.

D. TYPES CF TOOLS

Candidate areas for types of automated

specific organizaticn are suggested in the

[Ref. 31], and the Martin and McClure book [Ref

may LE categorized as:

62

1. s cf t-war e doc1ire ntatior., such as structure charts

flowcharts and cross-r(ferei.ciJL.
2. stii? g and dEtugging tools.

3. Software libraries.

4. High order languages (ECL).

5. Configuration management.

6. Data base management systems.

7. Management infcrmation systems.

3. Analysis tools, such as simulation and diagncsti

aids.

A rule of thumb for the manager may be to ste7 throug

this list of types of tools that may be available dnd may b

applicable to the specific organization. Certain old hard

ware configurations may have few choices of actual tool

that are available. In the same light, old oFeratin

systems or software languages may not be supported in sca

areas. In any case items 1 to 4 can aid specifically i

improving the maintenance programmer's understanding cf th

existing system.

The wide variaticns in specific functions that may als

Le addressed are shown in Table X from the National Burea

of Standards Special Publication 500-74, "Features a

Software Development Tools" reproduced in [Ref. 44]

Suggestions for the development of new advanced tools tha

may overcome some cf the problem areas mentioned ar

presented in fRef. 6].
Table XI from [Ref. 25: p. 411] is presented tc show

relationship between the types of tools available an] t-1

quality characteristics of the software. An emphasis withi

the ozganization for specific areas of improvements wil

force a manager to actively seek out one or more types o

tools. Some examples of these types of commercially avail

able tocls are:

* static analyzer- Amdahl's MAP

4

83

4

TABLE X

Tocl Function Taxonomy

Transformation Static A nalsis Dlnanic Analysis

Editing Auditing Assertion Checxinj
Formatting Comparison Constraint
InstrumentatiQn Complexity Evaluation
OFtimization Measurement Coverage Analysis
Restructuring Completeness Resource
,ranslation Checking Utilization

Consistency Simulation
Checking SymbolicCost Estimation Execution

Cross Reference Timing
Data Flow Tracing

Analysis Tuning
Error Checkin
Interface Analysis
Manage ment
Resource Estimation
Scanning
scheduling
Statistical Analysis
Structure Checking
Tracking
Type Analysis
Units Analysis

* structure checker - TRW's CODE AUDITOR

e crcss reference listers - TRW's DEPCHT, DPNDCY anI

FREF

- automatic doc menter - General Research Corp.'s RXIP

* automatic flowcharter - TRW's FLOWGEN

* structuring enginr - Catalyst Corp.'s COBOL Engine

e executive and performance monitor - TRW's PPE

84

'-- - - -

TABLE XI

Softvare Quality Measurement Tools

2uajit~y CharKacteristic Measurerneat Tool

1 . Understandability* Structure checker
Automatic flowcharter

Automatic complexity analyzer
2. Reliability Execution path tracers

Automatic complexity analyzer

I 3. Testability* Automatic flowchazter
IExecution path tracer

Automatic complexity a.nalyzer I
4.* Mcdifiability* Automatic complexity analyzer

5. Portability standard-language-version
compiler

Structure checker

*6. Efficiency Structure checker
Performance monitor

*Defined as reguirements for maintainability

E. ENVIEC1IBENTS

A list of the different types of tools that may be

needed within an organization is a good start for the

manager. The manager may then develop a list of those tocls

that are available fcr a specific environment, namely the

computer hardware in use, the software languages being used,

the database systems available, etc. These two lists may

not overlap at all, and what's more, the tools that are

availablE may not wcrk with each other. For this rea.scn,

there is developing a strong emphasis an making availatle an

environment that includes the tcols needed for the computer

language in use and compatibility with a variety of hardware

manufacturers. Twc environments under development are

85

specified here with scme problem areas discussed. One is

termed 'Program Manager' and the other is tied to the DoD

language Ada.

Cne cf the greatest problems within DoD is the use cf

cbsolete hardware for which no tools exist. The Guestion

then beccmes whether it is cost effective to retrofit the

new tccl to the old hardware or not. Unfortunately, the

answer is usually no, but the question must be answered on a

case-Ly-case basis.

1. Proqramming Zanager

Dean and McCune [Ref. 6] and others state a need for

a maintenance programming environment. A programming

manager could be an integrated tool that would help im[rove

the prograz development and maintenance process by ensuring

the systematic application of managerial and technical poli-

cies and methodologies. There are three particular problem

areas.

a. Standards and Policy

Management policies and standards are designed

to promote quality and reliability of the software as well

as minimize the retraining required. Unfortunately, the

volume and complexity of the standards and policy are such

that the- are often ignored. Policy should be clear, direct

and brief. Standards should be logically organized, indexed

* and useatle.

t. Systems retails

As a programmer is working on a large system, a
lot of time is spent learning how the system works. The

Erogrammer learns the minute details of how the system works

through the process cf modifying and debugging, but then

promptly forgets this detail as work goes on into ancther

86I!

project. The isual methods Cf recording information in

manuals, re,)orts and memos is often not appropriate for this

low level of information yet it is still vitally iniporcant

to the maintenance function.

C. Programmirg Environment

lost programming environments have a number of

tools available for use. Some of these are absolutely

necessary and familiar to the programmer, such as editors

and compilers. A variety of other tools may be available,

but not well-known to the programmers. lanuals and on-line

documentation provide very little help in this case since

the programmer must explicitly request the tool. If the

programmer has forgotten or doesn't know about them, they

will remain unused.

2. Ada Proqrammin Support Environment

Booch describes in [Ref. 33] the specific envircn-

ment being developed for the new DoD language, Ada. This

environment is referred to as the Ada Programming Support

Environment (APSE). The Ada language and environment now

being developed within the DoD is required for embedded

computer systems only, thus far. (In the non-embedded

systems there still is a need for some sort of program envi-

ronment unless Ada becomes workable for both.)

The Ada Programming Support Ervironment seeks to

support the system through its whole life cycle with the

expectations from [Ref. 45] of:

* reducing compiler development costs

* reduced tool development costs

e improve software portability

* improve programmer portability

87

0

/~C in, (nand

/ Luader /,.interpre.ter

I[lost

Oher Linkt~r i

Data /

\pmnagl EdItOr/
'K" Ada/

compiler

Tool

A\ PS I-intertac?

Figure 7.1 The Ada Programmuing Support Environment.

The arc-hitecture or the Ada ?rolr.inmir.; Su~pcrt

Environmaent is shown in Fijure 7. 1 f r o,' [Ref . 4 6. : he

central joint of control is Frvided ftjr tLe prijEct xara ,Er

ti~rough the program data base. The da ta Laise PLnsicallj

exists at the inner level o." the tenvirzor.xcr.t ir. the Hc-St

Operating system.

a. KAPSE

The Kernel Ada Programming Support Envircnaent

(KAPSE) is the next level which provides the logical to

physical mapping for the APSE. This provides the most

elementary rejuirements for run-time support. This suppcrt

of the logical/physical mapping is the needed portability

for the program. Thecretically then, the KAPSE would be the

only iiplementation-dependent change needed for rebcstirg an

environment.

b. MAPSE

Above the KAPSE is the Minimal Ada Programming

Support Environment (MAPSE) which contains a minimal set of

tools for program development, and, of course, maintenance.

As defined by STONEMAN [Ref. 47], the MAPSE contains

suggested tools such as:

0 text editor

* pretty printer (code formater)

* ccrpiler

* linker

* set-use static analyzer

e dyramic analysis tools

* terminal interface routines

* file administrator

o ccmmand interpreter

* configuration manager

I
• 89

I

C. APSE

The highest level and broadest view is the APSE
itself. This includes a set of advanced tools to support

all phases of the life cycle. Again STC.IEMAN [Ref. 47] does

not specify specific tools, but does reguire tools fcr:

* creation of data base objects

* modification

* analysis

e transformation

* display

* execution

* maintenance (emphasis added)

F. USE CF TOOLS AND STANDARDS

The final questicn to the manager regarding the use of

tools and standards within a specific organizaticn is how

they zay be integrated to manage the function cf mainte-

nance. Gilb presents a possible way to organize these tools

[Ref. 48]. He addresses one individual project, but the

authors feel that the manager may use this system to eval-

uate a specific project or the organization as a whole. The

process goes through a series of tables that are designed to

determine what new tools (referred to as techniques) that

the marager should actively seek out. Gilb steps througL a

simple project to demcnstrate a manager's process of evalua-

tion of one's objectives, priorities (referred tc as

Sglotas), and techniques already available within the organi-

zation. Some calculations between the organization's prior-

ities and currently available tools demonstrate areas where

the zanager might waLt to actively seek new tools.

90

0

There is one caution in this area though from the :oD

Joint Service Task Force Report [Ref. 31]. No widely

accepted productivity measure exists for the various tocls 9

nor ccmbinations of tcols. Using tools with which mainte-

nance personnel are familiar may be the most efficient

utilization of 2erscnnel resources because it reduces

mechanical activities and allows creative ones, but should

not le limited to these when additional tools would be

useful.

A standard emphasizes where personnel need tc be

trained. An example of a standards policy is can be shcwn

within the Department of the Navy. A Navy instruction,

SECNAVINST 5230.8, Information Processing Standards for

Computers (IPSC) Prcgram gives the overall policy informa-

tion on high order language (HOL) standards, while

attempting to avoid the proliferation of local- or vendor-

unique standards. 1he objective is to identify, develop

and imrlement standards that will:

g Provide for the greatest degree of compatibility

between non-tactical ADP systems and their associated

data systems.

* Facilitate the development of machine independent

software.

e Provide for efficient operation and utilizaticn cf the

ADP equipment.

* Incorporate and make available for general use related

standardization efforts of individual ADP

organiza tions.

* Increase reliability and transportability of software

and facilitate tackup and/or contingency processing.

91

A more specific standard, MAPTIS4 High Order language

('11OL) Standard (OPNAV P160-S7-94) [Ref. 49], while reccg-

nizing the wide variety of unique problems to he faced

within an organizaticn as large as the Navy, further sets

a~provali/ncnapproval status for the :IAPTIS program on. the

use of scftware languages. The latest language tools are

divided into fourth generaticn languages, non-procedural

languages and guery/retrieval languages. An example of

c lrrently available data management languages is shown in

Table XII from this standard. (This table is not intended

to be a comprehensive list.) According to this standard

Ref. 49: p. 4], it is not intended to discourage the use of

languages other than the already approved COBOL, FOR1RAN,

EkSIC and Ada. Instead, it should force commands to demcn-

stratE tie cost effectiveness of a new language in the

soecific situation and to provide higher level authority

with information about what and where languages are being

used and to provide information for evaluating siaiiar

languages.

4MAPTIS is an acronym fcr Manpower, Personnel and
T aining Information Systems.

92

4

F (n _
Icl 0

0'i 0
41 L-4

a4

.14 u HW U
4-JCl CI-J.4 ~~U-, -1 - J +

1-4 M7

93() UU t) . C a) ~)4 V)- * 0U- n-: 1)a

Q~.4-00 0.U)00L 0)04-

rn~I 0Hf.

00
0 (D (v

H~0 +
a)) -C V4 t- 4 V-

09 014J E1 M HCL4

0 Hh-4Ir.4I= -4 0-.-
(LiCr EI.-4 X -P. CA L-

C14tnI .04PC441 i-14 -4 0 El * - C
C4 4 -:C XH ' E r~ i H-i 4J 1-4-4 U 4 I!

0--I 1 -460 C CLh- Q Z ~ HQLa:.- W4

W-1 C OULOI g7.L 1. ~ "
2

..L" I.'I

93

C VIII. DATA EVOLUTION

A. DATA AS A TOOL

The area of data usage has two separate im~ications for

software maintenance. First, there is the guestion cf how

the separation of the data from the aplication prc ram

effects the function of those assigned to 1mtaintaln or

E inprcve, keep up-to-date, etc. the software system. The

se cond implication lies within the research and development

of thE software tool called a data base management system

(DBMS). Many tools and methods are being developed that can

aid in the process and management of th- software mainte-

nance function. This can be just one of them.

In this day and age of the computer, most organizatoni

are beginning to realize that no matter what the function cf

the organization (anything from product manuf cturing to

service-oriented financing) ,the information needed at all

levels is an important resource. This has created the

distirction between data and information. There is much raw

data available, but information is that data which is put

into a useable, correct, relevant and manageable form. Raw

data is useless until it is formatted and made available.

Correct and relevant information is needed at all levels.

It becomes just as important for the supervisor in a bank

o,eraticn to know the status of the transactions as it is

for the hank president to know the cost and economies of the

operations of the total organization.

The format of this information might be in any form from

a logically organized file drawer to a computer system with

automatic or query-driven, retrievable information. .ith

more and more data being processed by any organizaticn and

94

- Io

ccmputer hardware technology costing less and less, the oly

cost effective way to process data of a very siZEahle

amount, is to jrocess it on the computer. This Uay Trean

using ccputers from very large mainframes to micrc ;rcccs-

sors or any combinaticns in between. There will not be too

Much distinction beLween the size of these computer systems

* placed hreri, since the same principles stiff aj: ly, though

sometimes to a lesser degree. The decision making prccess

rEquires accurate and timely information. In the opinicn of

the authors it is becoming increasingly apparent then that

the individual who ccntrols the information is in control of

the organization. Thus, we as a society are rapidly xcving

from the Industrial Age.

B. USE CF DATA BASE MANAGEMENT SYSTEMS

ThE need then to manage and control this data separately

and effectively within an organization has created a data

base environment. The DBMS itself can effect the success of

the total package of maintenance tools. As Donahcc and

Swearingen state: "....database is an essential reguirement

fcr configuration management and for using automated tocls

tc maintain software" [Ref. 4: p. 5-2]. it provides a

0 convienient means of storing test cases, providing error

history and statistics, and cataloguing the detail program

characteristics. The data base environment has alsc heied

to get a handle on reducing some of the long-term mainte-

0 nance problems and ccsts.

The data base environment has not always existed. It

has grown from the recognition of the problems wit. the

management of data. Analysis had shown that data should be
• handled separately from the functions that the scftware nust

perform. Today there exist many levels of tnis separation

of data from functions in the various computer environments.

9

95

rAD- A52 835 MANAGEMENT ASPECTS OF SOFTWARE NAJNTENANCE(U) NAVAL 2/2
POSTGRADUATE SCHOOL MONTEREY CA B J HENDERSON ET AL.

UNCLASSIFIED F/G 9/2 U

Lmhhhhmi

V4

l I - _4

- 1.8

MICROCO)PY RESOLUTION TESE CHART

This development reFresents a change not only in software

but in data processing management. The separation of data
from function has evolved along with the other changes in 6

the data processing field, such as hardware improvements an

software languages. The separation has created the data

lase environment, where various programs and groups can have

access to the same data and which, if properly implemented,

can aid in the maintenance function. lartin and 3cClure

[Ref. 25] have presented this separation as a progression

through a series of four classes:

0 Files

* Application Data Base

* Sutject Data Base

* Information Systems

Martin and McClure have specified only these four

classes of environments, but the authors feel that a fifth

class for the distributed data base should be added. Each

level increases the implementation complexity of the system,

but adds to the management capability to handle greater and

more diverse amounts cf data. These five levels are defined

below in a chronological order, but this is not necessarily

implying that there must be a chronological movement

(classes I to V) of the structure of data at a specific

location, hut rather, that the various combinations of these

environments can and do exist at any one time within a

single organization.

1. Class I Envircnment: Files

All early computer systems handled data operations

as a file system. Systems were created to accomplisn a

specific function and the data description used was embedded

. 2 i i :6

II

cCmputer hardware technology costing less and less, the only

cost effective way to process data of a very sizeable

amount, is to i rocess it on the computer. This may wean

using ccmputers from very large mainframes to micro prcces-

sors or any combinaticns in between. There will not be too

much distinction between the size of these computer systems

placed here, since the same principles still apily, though

sometimes to a lesser degree. The decision making process

rEquires accurate and timely information. In the opinion of

tie authors it is becoming increasingly apparent then that

the individual who ccntrols the information is in control of

the organization. Thus, we as a society are rapidly mcving

from the Industrial Age.

B. USE CF DATA BASE MANAGEMEN7 SYSTEMS

The need then to manage and control this data separately

and effectively within an organization has created a data

base environment. The DBMS itself can effect the success of

the total package of maintenance tools. As Donahoc and

Swearingen state: "....database is an essential requirement

fcr configuration managemen- and for using automated tools

to maintain software" [Ref. 4: p. 5-2]. It provides a

convienient means of storing test cases, providing error

history and statistics, and cataloguing the detail program

characteristics. The data base environment has also helped

to get a handle on reducing some of the long-term mainte-

nance problems and costs.

The data base environment has not always existed. It

has grown from the recognition of the problems with the

management of data. Analysis had shown that data should be

handled separately from the functions that the software must

perform. Today there exist many levels of this separation

of data from functions in the various computer envircnments.

95

6

within the system. The problem was that an organization was

not static nor was (cr is) the data being processed. As

more and more systems were automated, major problems were

created. A high level of redundancy of the data was propa-

gating throughout these different systems, creating diffi-

cult maintenance problems of data consistency and integrity.
An apparently simple change could propagate a chain reaction

cf problems. These systems became very inflexible, espe-

cially when considering one time requests. File systems

also were very expensive to maintain [Ref. 25: p. 118].

Cften the great axount of money invested in existing file

systems and the normal resistance to chanje have delayed the

movement to the next level of environment. These costs are

sunk costs though and should not be considered since they

have nc effect on the improvements or the maintenance of the

system. Examples of file systems are VSAM and RMS.

2. Class II Environment: Ap lication Data Base

The problems of the data changing while the function

stayed tle same created the need for a data base system to

help manage and separate the data changes. The "data Lase"

term is used in many forms of literature, but it is often

only the currently pcpular term for a file system. A good

definiticn from Martin and McClure is

.... a shared collection of interrelated data designed
to meet the needs cf multiile t f end users. Itcan he defined as a collec ion o from which many
different end user views can be derived [Ref. 25: p.
1171.

In any case the key is the storage independence of

the data from the applicaticn programs plus the different

logical views allowed of the data. Any modification of only

the data then can be controlled independently. The class II

environment was created guite naturally from the

4

97

*.J

process-oriented esign. systems each started using a data

lase, but each applicatio, created its own data base. This

c was easier to implement than the next level, hut also

continued almost all the same problems as class I environ-

ment with a high redundancy of data that would continue to

proliferate as new furctions were added. In additicn to the

high ccst cf buying this DBMS package, there would hc the

continuing high cost cf maintaining the data. This Fcinted

up the necessity for a Data Administrator (DA) or Data Base

Alministrator (DBA) to aid in the planning and ccntrcl of

this crganizational resource. Some examples of the ccmmer-

cial packages are 'ICTAL by Cincom aad IDMS by Cullinet,

which originally came out in the early 1970's. The packages

purchased for use in this environment could also be the same

ones as those purchased for use in the next class III

environment.

3. Class III Environment: Subject Data Pases

In this environment there is an actual design of the

data structure done independently of the functions that must

he carried out through the programming systems. Although

this is the second environment to use data bases, it is the

first to actually help reduce maintenance costs. An cver-

head is the initial time required to do the analysis and

modeling of the data requirements, but this can reduce the

time and cost later cn in both the development and mainte-

nance of application systems and their interaction through a

single data base. This environment not only requires a

change in the traditional analysis methods, but also in the

traliticnal overall data processing management. Ideally,

there would be active use of some sort of DBA to maintain

planning and operaticnal control of the data, but there must

also he upper management support for this change in orgari-

zation. If that is nct done, an energetically started class

99

* - . .". . .S ; . . ." ' . mm " "m m - -

III envircnment can quickly degenerate into a class Il

envircnment (Ref. 25: p. 123].

4. Class IV Environment: Information Systems

This fourth class of data base is organized for the

purpose of fast retrieval of information rather than the

high volume producticr.runs, which can work best in a [atch

mode. Some examples of these systems might be IBM's SIAIRS

or some cf the relational models such as SQL and NOIAD,

which also provide good query facilities for these user-

driven systems. These systems are not difficult tc imple-

ment and provide great flexibility for systems that require

fast retrevial capabilities. On the other hand, they may

not be efficient for systems requiring high volume trans-

action processing.

In a case where both retrieval and production runs

are needed, trade-offs must be made between the two opposing

requirements. This may be done through a combination of

class III and class IV data bases where data is passed

through an "extractor" program [Ref. 25: p. 127]. This

would create two separate data bases where each is efficient

for its specific function, but data also must be controlled

and passed between the data bases on some schedule. This

schedule may be on one or many possible conditions: online,

offline, triggered by an event, ad hoc or even real time.

Careful attention must be paid to ensure the integrity of

both systems and the timing of each process. The major
problem is that if both data bases are not locked from

external use as updates are applied to both files simultane-

ously, the data bases could both become only partially accu-

rate. An alternative approach might be to maintain a single
data base and choose a system that was less efficiert for

either individual function, retrevial or production, but

adequate for both. This may be done by using multiple

99

inlexes or an inverted list. Only a thorough evaluaticn of

the individual situation can determine the best trade-off.

5. Class V Envircnment: Distributed Data Base

Tn this age cf the merging of the technologies of

computers and communications, another environment for

computer data most definitely is the use of data distributed

throughout a computer network. Data used at one specific

installation is handled through one or more of the classes I

through IV. Data can be passed as files from one computer

system tc another, as needed. In the case of on organiza-

tion whose functions are distributed among widely separate

geographic locations, pieces of data are contained at these

separate sites with a need for it to be managed by a single

sy3tem. A network data manager has been proposed for this

by a COEASYL committee to be another layer of their DBMS.

Its extensicn would he called Network Data Base Management

System (NDBMS). This would be another type of option that

could be implemented cn the DBMS that would manage the data

resource requested cn distant systems. The major drawback

for this CODASYL NEEMS is that it requires a homogenous

computer system.

Ancther and more well-known attempt in this direc-
tion is the System fcz Distributed Data Bases (SDD-1) by

Computer Corporation of America. This system was designed

foc the Department of Defense's ARPANET. It is designed to

haadle the problems in relation to a global data directory,

conflicts with possible deadlocks, and problems cf effi-

ciency. The replication of data at different sites is

permitted, if it is determined that duplication is more

efficient than the transmission costs involved [Ref. 50].

Either of these systems allows a choice for the

organizaticn that has many types of data and a requirement

to access that data at different sites in different ways.

100

Tha individual who is the network data manager for thEse

systems will have his or her hands full maintaining these

tyes of future system.s.

C. INLIVIDUAL DATA NEEDS

All organizations would not necessarily benefit from

moving to higher and higher levels of datq systems. There

are organizations whose use of the data, such as in very

high vclume transacticn processing, may even best be served

bv file systems. But when different ways of locking at the

sane data are needed, the data base system is needed. 7he

most frequent implementations today are combinations of

class III and class TV. Class V may be a reality in the

future, tut for now it is more of a concept.

101

6

. .

IX. CO NCLUSIONSRECO,1MENDATIONS

A. TEE PROBLEM

rhe maintainer's chief skill like the sirjeon's, is not
in raking desirable changes Eut in avoiding undesireatle
ones. (Any fool can tare out aft appEndix- the trick is
to take it out withcut killing the patient.) (Ref. 9:

fAs has been described the task cf computer scftkare

maintenance is no easy undertaking and consequently neither

is the function of the maintenance manager. A general

framework for analyzing this task has been presented tc aid

in understanding the process.

The central focus of this thesis has been that software

evolves. This thesis has examined the internal and external

factors involved in the ability of an organization to

respond and direct the evolutionary demands on software. In

an effort to help tle software manager understand software

evolution, the authors have concentrated on four topics.

Ea-zh topic serves as an element of the paradigm of evolu-

tion, building upon the last toward the goal of contrcliing

software evolution.

* Historical Perspective: To predict software evolu-

tion, the software manager must understand the present

and past states of the software system. That under-

standing is gained through the collection, retention

and analysis of data about software evolution.

* The Ability to Predict: Once the historical perspec-

tive is achieved, the software manager may predict how

various internal and external factors will influence

software evolution.

0

102

0

* The Focus of Control: Manpower is the critical

resource in software evolution, and thus effcrts to

(control the personnel resource will yield the most

sutstantial influence on software evolution. The key

to successful control of the personnel resource is

through understanding the nature of the mainterance

programmer and how this function is performed.

* The Means of Control: There are several ways to

ccntrol the influence of personnel on software evolu-

tion. The authors chose to focus on the use of soft-

ware tools, the enforcement of standards and the

integration of data as the means of control that would

offer the most Eositive long-range benefits.

B. CCNCIUSIONS

1. Historical Data Collection

Rhile data often exists with which a software

manager may develop a historical perspective, that data is

generally unusable due to a number of deficiencies.

Fundamental concepts are not universally defined. The defi-

nition Cf "software maintenance" itself is debated.

Concerts such as "Frogram complexity" and "programmer

productivity" are defined in largely subjective terms and

open to interpretaticn. Even a physical guantity like

"lines of code" cannot be consistently defined.

Vithout fundamental concepts rigorously defined,

metrics to measure the qualities of the software and of the

environment cannot be established. The collection, categor-

ization and analysis of data is virtually impossible without
0 a suitakle set of software metrics. The characteristic

elements of a software system discussed in Chapter IV were

presented in a highly subjective manner, and tend to reflect

the iaprecise nature cf contemporary software metrics.

103

Cnce a suitable set of software metrics for estiza-

tion is derived, data may be collected and analyzed to

establish the historical perspective of the software system.

2. Predictin Scftware Maintenance:

The state of the art of software maintenance cost

estimaticn is hobbled by an incomplete understanding cf the

factors that influence software evolution. Despite exten-

sive research into software cost estimation, existing devel-

opment models yield estimates that are, at best, within 201

of the actual cost roughly 8O of the time [Ref. 1: p. 521].

Molels designed to estimate software development costs tenl

to be even more inaccurate when applied to software mainte-

nance [Ref. 28: p. D-16). Thus, a software manager is

forced to employ several techniques and models when

attempting to predict future software evolution and estimate

the resources required to implement that evolution.

3. Personnel

In a final recognition of the necessity of the main-

tenance function, managers must value their maintenance

personnel. This is a function that will continue to receive

more attention as the cost of the maintenance function is

shown to be a large percentage of the software life cycle.

The goal is to have letter and more productive maintenance

pezsonnel.

There are three major. areas that must not be

nellected. These are training, incentives and career

progression.

M aintenance personnel must not be neglected when new

techniques, hardware, software, etc. classes are teing

given. They too must be included so they may be

prepared to meet the demands of the future.

0

104

Incentives can come in many forms. Training Ercgrams

may he an incentive to some career-minied 2aintainers.

Adeguate envircnment (working spaces), the tcols and

support to do the job, provide a great incertivt and

can show the raintenance programmer that he or s6h

really does count.

* Finally, the organization must show a valid career

progression to which one can aspire. How can the

in3ividaal reach their career goals wit:hin that orjan-

izatior? The military officer has an especially acute

4rclem if he cr she wants to consider a career iii

data processing in the Navy. The officers rotate into

and out cf the field, creating a very lizffc2it

problem of keeping up with the rapidly chancing

computer technclogy. The creation o a data

processing specialty would alleviate this -roblem.

4. Tools

In the push to make use of tools in a mai.terance

environment, the past is most definitely prologue. Th2

standards enforced, the tools used, the structure given in

the development of the system will directly effect what can

even he attempted in the maintenance phase. When the soft-

ware to be maintained is an old, assembler language, undocu-

mented system, remedial steps must be taken almost

immediately to have the working tools needel .=or the time

when the system bombs. These remedial steps cf providin]

current documentation on these systems can have a two-foll

benefit. It becomes a self defense measure to help avcid

disaster as well as providing initial training Zor the main-

tenance programmers. An example of the very few tocls

available for this retrofit is presented by Scnneider lin

[Ref. 38].

105

4 Si

The progressicn ideally would assume that the effort

in the development group would be toward the use cf higher

an d higher level languages with the comparable larger

numbers of tools and environments available. This assumes,

as has been shown, that the progression to fourth generation

languages with their rackage of integrated tools will allow

a morE e2ficient maintenance function in the future.

7he one recommendation the authors make in thi) areA

wo'l1 he fcr organizations to make better use of user's

groucs to discuss individ,.al roblems and explo-re the apl-. _-

cai.)ity cf now scftware tools. Specific communit ies

containing unigue ii-lementations, specialized hardware,

uniiue or obsolete languages, or combinations of these woild

he aided immeasurablly by contact on a regular basis. This

0 interaction could take the form of phone calls, conferences,

newsletters, networking, electronic bulletin boards, etc.

Such an interaction wculd enhance data-processing cohesive-

ness and offer a ready forum for the exchange of Erchiems

and their solutions.

5. Summarv

A basic understanding of this software evolution is

@1 reguiired for the maintenance manager to be able to antici-

pate the future; not with crisis management and the dread of

impending catastrophe, but with confidence, anticipating

where Frcblems may arise and how to meet them. Armed with

an accurate software history, the software manager may

Fredict with accuracy future directions for the software

system and estimate the resources required tc evolve in

those directions.

106

APPENDIX A

TOOLS

A. 7COL CATALOGS AND REFERENCES

Listed below are tool catalogs and references which may

he of scme use. They contain information on tool avail-

ability, functions and features, sources, cost, etc. from

[Ref. 51: p. E-1]

1. "DATAPRO Directory of Software," DATAPRO Research

Corp., McGraw-Hill.

2. "Software Development Tools", 3Secial Publication

500-88, Raymond C. Houghton, Jr., National Bureau of

Standards, March 1982.

3. "yederal Software Exchange Catalog", Federal Software

Exchange Center, General Services Administraticn,

Report No. GSA/ADTSC-82/1, January 1982.

4. "FCSC Conversion Tools Survey", Federal Conversion

Support Center, General Services Administraticn,

Report No. GSA/FCSC-82/001, October 1982.

5. Scftware Tool Catalog", Federal Software Testing

Center, General Services Administration, Report No.

FCTC-82/013, April 1982.

6. AUERBACH Technology Reports, AUERBACH Publishing

Inc., 1982.

7. "International Directory of Software, 1980 - 81",

CUYB Publicaticns, England, 1980.

9. "The EDP Performance Review -- Ninth Annual Survey of

Performance-Related Software Packages", Applied
Ccmputer Research, Volume 9, Number 12, December

lS81.

107

- -

9. "Software Engineering Automated Tools Inex", I
Scftware Research Associates, California, 1981.

10. "Software Tools: Catalogue and Recommendations", ,-F.w

refense and Space Systems Group, 1979.

11. "NES Software Tools Database", Raymond C. Hcughtcn,

Jr. and Karen A. Oakley, NBS-IR-80-2159, National

Bureau of Standards, October 1980.

12. "ICP Software Directory - Data Prccessing

Management", P.O. Box 2850, Clinton, Iowa 92732.

13. "AIAA Computer Systems Committee Software Iocls

Survey", Data & Analysis Center for Software, Rcme

Air Development Center (RADC), ISISI, Griffiss Air

Force Base, NY 13441.

14. "Software Tools Survey", Federal Software Testing

Center, General Services Administration, Repcrt No.

OSD/FSTC-83/015, June 24, 1983.

B. SCFTVARE MAINTENANCE COST ESTIMATING MODELS

The purpose of this section of the appendix is to

briefly summarize selected software maintenance cost estima-

tion models. A rigorous analysis or comparison of the

models will not be attempted.

1. Software Lifecycle Model - SLIM

This model is available from Quantitative Software

Management, Inc. An automated system, SLIM operates on
Hewlett Packard equipment and is in use at the Naval

Electronic Systems Command. SLIM is derived from L.

Putnam's Life Cycle Model as represented by the Rayleigh

distribution. (See Figure 2.3). Courses on the the use of

SLIM are offered thrcugh the Department of Defense Compiter

Institute, Washington, D.C.

2. Constructive Cost Model - CCCO3O

108

v _

The CCCCMO model was developed by Barry W. 3oehm and is

presented in great detail in his book Software EnjineErinj

Economics, [Ref. 1]. COCOMO is easy to use with ruzercus

tables from which the estimator may readily derive the

required parametric values. The model algorithm is well-

discussed and lends itself well to automation.

3. The Scope of Effcrt Algorithm

This mcdel was developed by G.S. Hoppenstand, IT, USN

and I. T. Nowak [Ref. 21] at the Naval Security Grcup

Activity, Skaggs Is., California specifically for estimating

software maintenance. Their rather unique approach is to

analyze the complexity of a given software system, then

derive the number of "steps" required to complete an average

maintenance task. (This approach is possibl.e largely

because the effort of studying the existing system and is

the single largest task in performing the software mainte-

nance - Figure 2.1.) Their model then predicts the number

of "steps" a military programmer of given experience can

conplete per year. Thus, the billet requirements may be

calculated for a given system.

4. The Model for Estimating Tactical Software Maintenance

Requirements

This model was developed by W. H. Merring, III, Capt,

USHIC as a master's thesis at the Naval Postgraduate School,

Monterey, California. The Merring model [Ref. 22] em~lcys

"bebugging", a technique of seeding a program with inten-

tional errors to determine the error rate, the detectability

of errors, and the maintainability of the program. This

technique is used to estimate the corrective maintenance

worklcad. Enhancement maintenance is estimated tisinj

Haistead's Effort Metric [Ref. 24] as a measure of prcgram

complexity. Halstead's metric has been shown to be effec-

tive at estimating maintenance costs in unstructured code

[Ref. 4: p. 2.14].

109

LIST OF REFERENCES

1. Boehmf Barry W. Software Engineering Economics,
Prentice Hall, Inc., T'T-

2. Lientz, B. P. and Swanson, E. 3., S oftware Maintlenarce
.1raqtejj Addison-Vesley, 1980.

3. Pressman, Roger, S., Software Enqineerin:
Prciioe~ ApRR1ach, McGrawiII BoU o., T982

4. Rome Air Develc~ment Center Regort PADC-TR-90-13, A
Review of Software Miaintenance lachnolg by John D.
15-i9H5o'n--- 5Y iweri eFbur 980.

5. Van Hcra, Earl C., "Software Must Evolve", Software
Enineerin~q, H. Freeman and P. M. Lewis, ZH15?E3?,
Xc allii-cPress, pp. 209-226, 1980.

6. Rome Air Develcpment, Center Report RADC-TR-82-313,
Advanced Tools for Software Main tenance, by Jeffery S.

7. Fisher, David A., and Standish, Thomas A., "Initial0Thoughts on the Pebbleman Process", -ittt o
Defense Analysis, January 3, 1979. fo

8. "Federal Agencies' Maintenance of Computer APrograms:
Expensive and Undermanayed", General AccountingOC lice, AFMD-81-25, February 26 191.

9. Parikh, Girish and Zvevintzov, Nicholas, "The World of
Software Maintenance', Tutorial on Software
Maintenance, IEEE Computer Socity Preg-, .~

10. Fjeldstad, K. . and Hamlen, W. T., "Aplic at ion
Program Maintenance Study* Report to Cur
ReEpondents", h;,IB M Corporalion, DP Marketing Group,
White Plains, N, 1979.

11. McClure, Carma L. janaaqin~j Software Develcj~ment and
Maintenance, Var. Nostran d

12. Brooks Jr., Fzedri~ck P., The Mythical Nar-Month:
E§§2xs on Soft ware Egninngj:Rq, dIsoiely

13. Putnam,. Lawrence H. , Tutorial on Software Ccst
stmtn and Life-CycI--3H'ro1T -4e T -i-nq T1_e

* IO-'r~ Ilium1591 s TvE-ofP~e=f!i Press, section

110

14. Richardson, G. 1. and Butler, C. W., "Organizational
Issues of Effective Maintenance Management", AFIPS
Conference Proceedings, National Com puter Conference,

-- XFTPS Press, vol. 52, pp. 155-161,19 3.

15. Lehman, M1. M., "Laws and Conservation in Large Program
Evclution" in Proceedings, Second LifecgcleManagement WorkshoX--En- , Georgia4 p. 4-3,5

16. Boehm, Barry W., "Economics of Software laintenance",
Prcceedinqs of the Software Maintenance WorkshoE, at

-I7 q -e d=eey ua ornia,
December 6-8, 1983, IEEE Computer ociety Press, F. 5,
1983.

17. Air command and Staff College Report 83-1325,Software Maintenance Cost Estimatin q, by G. H. Klemas,Td z-H-6-r 8 '.-

18. Jones, Carl R. ani Ein-Dor, Phillip, Information
Resources lanagement, Elsiever Science, fortc-cmin_

19. Rome Air Development Center Report RADC-TR-81-144, An
Evaluation of Software Cost Estimating Model.s,EZ5Z-T-:T'ibo ;a',- u-e- 11"_-.

20. Mohanty, Siba N Software Cost Estimation: Present
and Future", Scfware - Practice and Experience, vol,11, pp. I 3 I -9 .- . .

21. Hopenstand, G. S. and Nowak, L. J., ManLagezent of
Naval Security Grop ,Pro rammer Resources -- v lI
Securt7ZrEup T2c i -y, -a Isli-'--U'lifornia,
1982.

22. Merring III, William H., A Model for 7stimatinj
Tactical Software Maintenance-Re-s,- r-s
Tne-.- avl- -P g te-- ocMoo=,- monterey,
California, 1982.

23. Glass, Robert I. and Noiseux, Ronald A Software
Maintenance Guidebook, Prentice-Hall, Inc. , 19WT.

24. Halstead Maurice H., Elements of Software Science,
Elsevier North Holland,--77.

25. Martin, James and McClure, Carma, Software
Maintenance: The Problem and its So. _U_-_,

HE-e= ll, In-c., 13937---

26. Jones, T. C., "Measuring Programming Quality and
Prcductivity", IBM Systems Journal, vol. 17,no. 1,
pp. 39-63, 19 .---

111

0_

27. Jones 1 Caspar, "Estimating Productivity, 2'ialSity, an I
Schedul es tor tProgrammin5 Systems" Proceedinig cf the
Softwdre Maintenance Worksho.p, at "~~OsFrru

~ calr~?~i~December 6-8, 1983, IEEE
Computer Society Press, pp. 3-41, 1983.

28. Computer Software Management Subgroup, Pr oceedin~zs of
the Joint Commanders, Joint Polic.Z CoorH'UT n- ~o-33
3f- 'CiUtZe 1s5Urc e -7-a-n-aIeeq.1 s-c-TSof f-'-'

29. Brown, P. J., "Why Does Software Die", Infotech State
of the Art Re.2crt, series 8, no. 7, pp. 7T!T53T9SD-.

30. iWclverton, F. W., "Software L iie Cycle
Management-D~nazics Practice", in Proceedinjqs: Second
Software Li.ec cle Management F~37-AtT3inta,

31. "lReport of the Department of Defense Joint Service
Task Force on Software Problems (U)"I AD-A123 449,
Derartment of refense, Washington, 5~.C. , July 30,

32. lvcns, Michael J., "Salvaging Your Software Asset
(Tools Based Maintenance) ", AFIPS Conference
rcceedings, National Computer ConTY-4ce -- ~-=-

,'713117- M= Press, vol. M0 pp. 337- 341, 1 96 .

33. Booch, Grady, Software Engqineeri.ng with Ada, 7he
Benjamin/C ummings- =Ii~iiB 7Tic.,

34. Schneiderman, Pen, Software Psycholo.uY: 11uman Factors
in Comuter an i'T all~ s m, Wi ho
Ptl1i-sIjrs-7Tn c2 : 19 80.-----_

*35. U. S. Air Force (COITEC-2000), Computer Technoq-
Forecast and WeaR2R aysElll ~'

DZINEFf 137S.

36. Lientz, Bennet P., "Issues in Software Maintenance",
University of California, Los Angeles, work partially
SUEported by Office of Naval Research, project nunhier

* NR 849-3 45, July 1983.

37. heinberg, Gerald I., The P choloqy of Comruter
krgram1min~q, Van Nostrand ein~o1 3 CpanylT

38. Schneider, G. R. Eugenia, Structured Software
4 Maintenance, Master's Thesis,

Un verit7Chico, 1981.

39. Bronstein, Gary M. and Okamoto, Robert I. , I'Tm OK,
You're OK, Maintenance is OKI', Compterworld, January
12, 1981.

112

~~71

43. Canning, Richard G. , editor, "Thiat Maintenance'Icethrj'", Aalyzer, Canning Publications, Ic. ,
vol. 10, no.-11,- U'F -r-1972.

41. Alford, n. W. , "A Reqiuirements Engineering 'lethodclo
for Peal-Time Processiny Regjuireaents", . .
Transactions on Software ELneerinj, S7-3(1) :6.07

42. Rossf D., and Schoman K., "Structured Analysis for
Requirements Definition", IEv Transactions on
Software Engineerinl, vol. 3, no. Ta

43. Wasserman, Anthony I., "Information System Design",Jcurnal of the American Society for Information_Jae, Ulnu' l 131---

44. Federal Software Testing Center, General Services
Administration, Report OSD-82-101, Software Socls
Prcject: A Means of Capturinq Technoloq7-TE-n- roving

45. Notes on Ada Programming Support Environments,
Softech, p. 41E/4, August 11, 1981.

46. Wolf, M., and others, "The Ada Language Systen",
Cciputer, p. 38, June 1981.

47. Department of Defense, Reguirements fcr AdaroroinSort E nvironments -E9-eman,-p. -"-

48. Gilb, Thomas, "Design by Objectives: Maintainability",
Tutorial on Software Maintenance, IEEE Compuler

49. Department of the Navy, Deputy Chief of Naval
0perations (Man-ower Personnel and Training) ,C2NA7
P 60-$7-84, MAPISHgah Order Lan,4ae (- ndr,
M a r c h 1 9 8 4 . -r

50. Rothnie Jr., J. B. and others, "Introduction to aSystem for Eistributed Databases ISD D- I) " ACM
T'ransactions on Database S~yste.Ms, Vol. 5, no. 1, MaZ-71

51. Federal Conversion Sutport Center General Services
Administration, Report OSD/FCSC-83-F06, Ihe Software
Imjrovement Process -- Its Phases X7 -T-Ss
X -"-c7 pa=-E--- 27-Juy-T983.-----

113

BIBLIOGRAPHY

Cash Jr., James I. McFarlan, F. Warren and IcKenney, Jares
L. Cczporate Information Slstems lanagement: Text and
Cases ,;c DriT7fc;T'9137-

VeMarco Th s, Ccntrollinj Software Pr2ects, Ycrdcn
Press, 1982. h oma -l

Freeman, Peter and Wasserman, Anthony I., eds., Tutorial on
Software Desiqn Techniques, IEEE Computer SocieT-Pres-,

Parikb, Girish and Zvegintzov, Nicholas, eds., Tutcrial on
Software Maintenence, IEEE Computer Society Press-T-

Pierce Jr. Charles and Wagner, Rebecca Louise, Software
Eevelcpment Projects Estimation of Cost and E f3YTo--r-X
11Nr T --- Diest - Ma§ erls-TFsis, Fal-Po§ -auatZ" 53 o 1-- 9 8 .2----

Todv, Stephen L. and Hodgson, Ray A.. Projection of Maximum
Software 1aintenance Manning Levels, 1a~ tr'-TIsis,---I

2)i0

114

INITIAL DISTRIBUTION LIST

No. Ccpies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. litrary, Code 0142 2
Naval ostraduate School
Monterey, Calif crnia 93943

3. Cdr Dean Guyer, SC, USN, Code 54Gu
Administrative Sciences'Department
Naval Post raduate School
Monterey, Califcinia 93943

4. II Brenda J. Sullivan, USN
Naval Military Personnel Ccmmand
ATTN: (NMPC-47)
Navy Department
Washington, D.C. 20370

5. IT Brian Henderscn, USN
Naval Security Group Activity
Fort George G. MIeade, MD 20755

6. Professor Carl E. Jones, Code 54Js
Administrative Sciences Department
Naval Postgraduate School
Monterey, Califcrnia 93943

7. Curricular Office - Code 37
Computer Technolcgy
Naval Post raduate School
Monterey, alifcrnia 93943

0

115

1

FILMED

5-85

0

* DTIC
0J

